Carman Lab Publications

PubMed Link

Zhang, Z., G. He, G.-S. Han, J. Zhang, N. Catanzaro, A. Diaz, Z. Wu, G. M. Carman, L. Xie, and X. Wang 2018.  Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis. PLoS. Pathog. 14: e1006988

Carman, G. M. and G. S. Han 2018.  Phosphatidate phosphatase regulates membrane phospholipid synthesis via phosphatidylserine synthase. Adv. Biol. Regul. 67: 49-58. Reprint

Hayes, M., V. Choudhary, N. Ojha, J. J. Shin, G. S. Han, G. M. Carman, C. J. Loewen, W. A. Prinz, and T. Levine 2017.  Fat storage-inducing transmembrane (FIT or FITM) proteins are related to lipid phosphatase/phosphotransferase enzymes. Microb.Cell 5: 88-103. Reprint

Park, Y., G. S. Han, and G. M. Carman 2017.  A conserved tryptophan within the WRDPLVDID domain of yeast Pah1 phosphatidate phosphatase is required for its in vivo function in lipid metabolism. J. Biol. Chem. 292: 19580-19589. Reprint

Han, G.-S., and G. M. Carman.  2017.  Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis. J.Biol.Chem. 292: 13230-13242. Reprint

Hassaninasab, A., G.-S. Han, and G. M. Carman.  2017.  Tips on the analysis of phosphatidic acid by the fluorometric coupled enzyme assay.  Anal. Biochem.  526: 69-70.  Reprint 

Dey, P., W.-M. Su, G.-S. Han, and G. M. Carman.  2017.  Phosphorylation of lipid metabolic enzymes by protein kinase C requires phosphatidylserine and diacylglycerol.  J. Lipid Res. 58:742-751. Reprint

Qiu, Y., A. Hassaninasab, G.-S. Han, and G. M. Carman 2016.  Phosphorylation of Dgk1 diacylglycerol kinase by casein kinase II regulates phosphatidic acid production in Saccharomyces cerevisiae. J. Biol. Chem. 291: 26455-26467. Reprint

Temprano, A., H. Sembongi, G. S. Han, D. Sebastian, J. Capellades, C. Moreno, J. Guardiola, M. Wabitsch, C. Richart, O. Yanes, A. Zorzano, G. M. Carman, S. Siniossoglou, and M. Miranda. 2016.  Redundant roles of the phosphatidate phosphatase family in triacylglycerol synthesis in human adipocytes. Diabetologia 59: 1985-1994. Reprint

Hsieh, L.-S., W.-M. Su, G.-S. Han, and G.M. Carman. 2016.  Phosphorylation of yeast Pah1 phosphatidate phosphatase by casein kinase II regulates its function in lipid metabolism. J. Biol. Chem. 291: 9974-9990. Reprint

Barneda D., J. Planas-Iglesias, M. L. Gaspar, D. Mohammadyani, S. Prasannan, D. Dormann, G. S. Han, S. A. Jesch, G.M. Carman, V. Kagan, M. G. Parker, N. T. Ktistakis, J. Klein-Seetharaman, A. M. Dixon, S. A. Henry, and M. Christian. 2015. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. Elife. DOI: 10.7554/eLife.07485. Reprint

Park Y., G. S. Han, E. Mileykovskaya, T. A. Garrett, G. M. Carman. 2015. Altered lipid synthesis by lack of yeast Pah1 phosphatidate phosphatase reduces chronological life span. J. Biol. Chem. 290: 25382-25394. Reprint

Barbosa A. D., H. Sembongi, W. M. Su, S. Abreu, F. Reggiori, G. M. Carman, and S. Siniossoglou. 2015. Lipid partitioning at the nuclear envelope controls membrane biogenesis. Mol. Biol. Cell 26: 3641-3657. Reprint

Hsieh L.-S., W.-M. Su, G.-S. Han, G. M. Carman. 2015. Phosphorylation regulates the ubiquitin-independent degradation of yeast Pah1 phosphatidate phosphatase by the 20S proteasome. J. Biol. Chem.290: 11467-78. Reprint

Sahu-Osen, A., G. Montero-Moran, M. Schittmayer, K. Fritz, A. Dinh, Y.-F. Chang, D. McMahon, A. Boeszoermenyi, I. Cornaciu, D. Russell, M. Oberer, G. M. Carman, R. Birner-Gruenberger, and D. L. Brasaemle. 2015. CGI-58/ABHD5 is phosphorylated on Ser-239 by protein kinase A: Control of subcellular localization. J. Lipid Res. 56: 109-121. Reprint

Su, W.-M., G.-S. Han, and G. M. Carman. 2014. Yeast Nem1-Spo7 protein phosphatase activity on Pah1 phosphatidate phosphatase is specific for the Pho85-Pho80 protein kinase phosphorylation sites. J. Biol. Chem. 289: 34699-34708. Reprint

McMahon, D., A. Dinh, D. Kurz, D. Shah, G.-S. Han, G. M. Carman, and D. L. Brasaemle 2014.  Comparative gene identification 58/alpha/beta hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity. J. Lipid Res. 55: 1750-1761. Reprint

Su, W.-M., Han, G.-S., and Carman, G. M. 2014.  Cross-talk phosphorylations by protein kinase C and Pho85p-Pho80p protein kinase regulate Pah1p phosphatidate phosphatase abundance in Saccharomyces cerevisiaeJ. Biol. Chem. 289: 18818-18830. Reprint

Pascual, F., L.-S. Hsieh, A. Soto-Cardalda, and G. M. Carman 2014.  Yeast Pah1p phosphatidate phosphatase is regulated by proteasome-mediated degradation. J. Biol. Chem. 289: 9811-9822. Reprint

Pascual F., A. Soto-Cardalda, G. M. Carman. 2013. PAH1-encoded phosphatidate phosphatase plays a role in the growth phase- and Inositol-mediated regulation of lipid synthesis in Saccharomyces cerevisiae.J. Biol. Chem.288: 35781-35792. Reprint

Gallo-Ebert, C., M. Donigan, H. Y. Liu, F. Pascual, M. Manners, D. Pandya, R. Swanson, D. Gallagher, W. Chen, G. M. Carman, and J. T. Nickels, Jr. 2013.  The yeast anaerobic response element AR1b regulates aerobic antifungal drug-dependent sterol gene expression. J. Biol. Chem. 288: 35466-35477. Reprint

Sembongi, H., M. Miranda, G.-S. Han, S. Fakas, N. Grimsey, J. Vendrell, G. M. Carman, and S. Siniossoglou 2013.  Distinct roles of the phosphatidate phosphatases lipin 1 and 2 during adipogenesis and lipid droplet biogenesis in 3T3-L1 cells. J. Biol. Chem. 288: 34502-34513. Reprint

Qiu, Y., S. Fakas, G.-S. Han, A.D. Barbosa, S. Siniossoglou, and G. M. Carman. 2013.  Transcription factor Reb1p regulates DGK1-encoded diacylglycerol kinase and lipid metabolism in Saccharomyces cerevisiae.  J. Biol. Chem. 288: 29124-29133. Reprint

Michot, C., A. Mamoune, J. Vamecq, M. T. Viou, L.-S. Hsieh, E. Testet, J. Laine, L. Hubert, A. F. Dessein, M. Fontaine, C. Ottolenghi, L. Fouillen, K. Nadra, E. Blanc, J. Bastin, S. Candon, M. Pende, A. Munnich, A. Smahi, F. Djouadi, G. M. Carman, N. Romero, Y. de Keyzer, and P. de Lonlay 2013.  Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts. Biochim. Biophys. Acta 1832: 2103-2114. Reprint

Karanasios, E., A. D. Barbosa, H. Sembongi, M. Mari, G.-S. Han, F. Reggiori, G. M. Carman, and S. Siniossoglou.  2013.  Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p. Mol.Biol.Cell 24: 2124-2133. Reprint

Kim, H. E., E. Bae, D.-Y. Jeong, M.-J. Kim, W.-J. Jin, S. W. Park, G.-S. Han, G. M. Carman, E. Koh, and K.-S. Kim.  2013.  Lipin1 regulates PPARgamma transcriptional activity. Biochem.J. 453; 49-60. Reprint

Chae, M. and G.M. Carman. 2013. Characterization of the yeast actin patch protein App1p phosphatidate phosphatase.  J. Biol. Chem. 288: 6427-6437. Reprint

Chae, M., G.-S. Han, and G. M. Carman. 2012. The Saccharomyces cerevisiae actin patch protein App1p is a phosphatidate phosphatase enzyme. J. Biol. Chem.287: 40186-40196. Reprint

Nadra, K., J. J. Medard, J. D. Mul, G.-S. Han, S. Gres, M. Pende, D. Metzger, P. Chambon, E. Cuppen, J. S. Saulnier-Blache, G. M. Carman, B. Desvergne, and R. Chrast. 2012. Cell autonomous lipin 1 function is essential for development and maintenance of white and brown adipose tissue. Mol. Cell Biol. 32: 4794-4810. Reprint

Su, W.-M., G.-S. Han, J. Casciano, and G. M. Carman. 2012. Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast. J. Biol. Chem. 287:33364-33376. Reprint

Choi, H. S., W. M. Su, G. S. Han, D. Plote, Z. Xu, and G. M. Carman. 2012. Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism. J. Biol. Chem. 287: 11290-11301. Reprint

Xu Z., W. M. Su, G. M. Carman. 2012.  Fluorescence spectroscopy measures yeast PAH1-encoded phosphatidate phosphatase interaction with liposome membranes. J. Lipid Res. 53: 522-528. Reprint


Merrill, A.H., Jr., and G. M. Carman. 2015.  Introduction to thematic minireview series: novel bioactive sphingolipids.  J. Biol. Chem. 290: 15362-15364. Reprint

Gomez-Cambronero, J. and G. M. Carman 2014.  Thematic minireview series on phospholipase D and cancer. J.Biol.Chem. 289: 22554-22556. Reprint

Pascual, F. and G. M. Carman. 2013. Phosphatidate phosphatase, a key regulator of lipid homeostasis.Biochim. Biophys. Acta.1831: 514-522. Reprint

Carman, G. M. 2012. An unusual phosphatidylethanolamine-utilizing cardiolipin synthase is discovered in bacteria. Proc. Natl. Acad. Sci. U. S. A 109:16402-16403. Reprint

Henry, S.A., S.D. Kohlwein, and G.M. Carman.  2012.  Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae.  Genetics 190: 317-349.  Reprint

Carman, G. M. 2012.  Thematic minireview series on the lipid droplet, a dynamic organelle of biomedical and commercial importance. J. Biol. Chem. 287: 2272. Reprint

Carman, G.M., and G.-S. Han.  2011.  Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae.  Ann. Rev. Biochem. 80: 859-883. Reprint

Carman, G.M. 2011.  The discovery of the fat-regulating phosphatidic acid phosphatase gene.  Front. Biol. 6: 172-176. Reprint

Carman, G.M., and G.-S. Han.  2009.  Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis.  J. Biol. Chem. 284: 2593-2597. Reprint

Carman, G.M., and G.-S. Han.  2009.  Regulation of phospholipid synthesis in yeast.  J. Lipid Res. 50: S69-S73. Reprint

Chang, Y.-F., and G.M. Carman.  2008.  CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae.  Prog. Lipid Res. 47: 333-339. Reprint

Carman, G.M., and S.A. Henry.  2007.  Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiaeJ. Biol. Chem. 282: 37293-37297. Reprint

Carman, G.M., and G.-S. Han.  2007.  Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion.  Biochim. Biophys. Acta. 1771: 322-330. Reprint

Carman, G.M., and S.A. Henry.  2007.  Special issue:  Regulation of lipid metabolism in yeast.  Biochim. Biophys. Acta. 1771: 239-240. Reprint

Carman, G.M., and G.-S. Han.  2006.  Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem. Sci. 31: 694-699. Reprint

Carman, G. M.  2005.  Regulation of phospholipid synthesis in yeast by zinc.  Biochem. Soc.Trans. 33: 1150-1153. Reprint

Carman, G.M., and M.C. Kersting.  2004.  Phospholipid synthesis in yeast: regulation by phosphorylation. Biochem. Cell Biol. 82: 62-70. Reprint

Han, G.-S., and G.M. Carman.  2004.  Phospholipid synthesis in yeast, in Encyclopedia of Biological Chemistry (W.J. Lennarz and M.D. Lane, eds), Elsevier, Oxford. 3: 321-325.

Oshiro, J., G.-S. Han, and G.M. Carman.  2003.  Diacylglycerol pyrophosphate phosphatase in Saccharomyces cerevisiae.  Biochim. Biophys. Acta 1635: 1-9. Reprint

Kent, C., and G.M. Carman.  1999.  Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus.  Trends Biochem. Sci. 24: 146-150. Reprint

Carman, G.M. and S.A. Henry.  1999.  Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes.  Prog. Lipid Res. 38: 361-399. Reprint

Carman, G.M., and G.M. Zeimetz. 1996. Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiaeJ. Biol. Chem. 271: 13292-13296. Reprint

Carman, G.M. 1997.  Phosphatidate phosphatases and diacylglycerol pyrophosphate phosphatases in Saccharomyces cerevisiae and Escherichia coli.  Biochim. Biophys. Acta  1348: 45-55. Reprint

Carman, G.M., R.A. Deems, and E.A. Dennis. 1995. Lipid signaling enzymes and surface dilution kinetics.J. Biol. Chem. 270: 18711-18714. Reprint