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Abstract

The yeast Saccharomyces cerevisiae, with its full complement of organelles,
synthesizes membrane phospholipids by pathways that are generally
common to those found in higher eukaryotes. Phospholipid synthesis
in yeast is regulated in response to a variety of growth conditions (e.g.,
inositol supplementation, zinc depletion, and growth stage) by a coor-
dination of genetic (e.g., transcriptional activation and repression) and
biochemical (e.g., activity modulation and localization) mechanisms.
Phosphatidate (PA), whose cellular levels are controlled by the activi-
ties of key phospholipid synthesis enzymes, plays a central role in the
transcriptional regulation of phospholipid synthesis genes. In addition
to the regulation of gene expression, phosphorylation of key phospho-
lipid synthesis catalytic and regulatory proteins controls the metabolism
of phospholipid precursors and products.
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Phospholipid: a
membrane component
whose structure is
based on a glycerol-3-
phosphate backbone
with fatty acids
esterified to positions
1 and 2

PC:
phosphatidylcholine

PE: phos-
phatidylethanolamine

PI:
phosphatidylinositol

PS:
phosphatidylserine
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INTRODUCTION

Phospholipids are major structural components
of cellular membranes and are essential for vi-
tal cellular processes (1, 2). Their structure is
based on a glycerol-3-phosphate backbone in
which fatty acyl groups are esterified to po-
sitions 1 and 2 (Figure 1). As amphipathic
molecules, they form a bilayer in which inte-
gral and peripheral membrane proteins, as well
as other complex components, associate (3). In
addition, they are reservoirs of second messen-
gers (4), provide precursors for the synthesis of
macromolecules (5–9), serve in the modifica-
tion of membrane association (10), and function
as molecular chaperons (11). In the budding
yeast, Saccharomyces cerevisiae, which contains a
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Figure 1
Basic phospholipid structure. The diagram shows
the structure of phosphatidate (PA), the
phospholipid precursor, with fatty acyl groups
containing 16 carbon atoms (position 1) and 18
carbon atoms with one double bond (position 2).

full complement of organelles, phospholipids
are synthesized via pathways that are generally
common to those found in higher eukaryotic
organisms (12, 13). Its tractable genetics has fa-
cilitated the identification and characterization
of nearly all of the structural and regulatory
genes that are involved in de novo phospho-
lipid synthesis (13, 14). Moreover, the purifica-
tion and characterization of key enzymes from
the organism have led to an understanding of
biochemical regulation in phospholipid synthe-
sis (12, 15, 16). Phospholipid synthesis in yeast
is a complex process that is regulated by genetic
and biochemical mechanisms (12, 14–20), and
its regulation is interrelated with the synthe-
sis and regulation of other major lipid classes
that include fatty acids, triacylglycerol (TAG),
sterols, and sphingolipids (12, 21–25). In this
review, the focus is on the interrelationships be-
tween the genetic and biochemical regulations
of the synthesis of the major phospholipids in
S. cerevisiae. The way that yeast gene and pro-
tein terms are named is described in the sidebar
Yeast Gene/Protein Nomenclature.

PATHWAYS FOR THE SYNTHESIS
OF THE MAJOR PHOSPHOLPIDS

The major phospholipids found in the cel-
lular membranes of S. cerevisiae include
phosphatidylcholine (PC), phosphatidyletha-
nolamine (PE), phosphatidylinositol (PI), and
phosphatidylserine (PS) (26–29). Phosphatidyl-
glycerol (PG) and cardiolipin (CL) are
also major phospholipids in mitochondrial
membranes (26, 28, 29). Minor phospho-
lipids include intermediates: phosphatidate
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PG:
phosphatidylglycerol

CL: cardiolipin

Phosphatidate (PA):
a phospholipid
precursor that
stabilizes the
interaction of Opi1p
with Scs2p at the
nuclear/ER membrane

CDP-DAG:
CDP-diacylglycerol

DAG: diacylglycerol

(PA); CDP-diacylglycerol (CDP-DAG) phos-
phatidylmonomethylethanolamine and phos-
phatidyldimethylethanolamine; the D-3, D-4,
and D-5 polyphosphoinositides; lysophospho-
lipids; and diacylglycerol (DAG) pyrophos-
phate (26, 30, 31). The most common fatty acids
esterified to the glycerophosphate backbone of
these lipids include palmitic acid, palmitoleic
acid, stearic acid, and oleic acid (26, 27, 32–34).
The relative amounts of the phospholipids vary
with growth conditions (e.g., carbon source,
nutrient availability, temperature, and growth
phase) and with genetic variations (18, 26, 28,
29). Although the proportions of the individ-
ual phospholipids change, the average charge of
the membrane phospholipids remains relatively
constant (29, 35). Thus, regulatory mechanisms
exist in S. cerevisiae to compensate for changes
in the levels of phospholipids of one charge by
coordinating parallel changes in the levels of
phospholipids of the opposite charge.

The pathways for the synthesis of major
phospholipids in S. cerevisiae are presented in
Figure 2. The structural genes and enzymes
involved in the pathways have been confirmed
by the analysis of gene mutations and the bio-
chemical characterization of purified enzymes
(12, 15, 28, 36, 37). The synthesis of membrane
phospholipids begins with the phospholipid
PA, which is produced from glycerol-3-
phosphate or dihydroxyacetone phosphate
after fatty acyl coenzyme A (CoA)-dependent
reactions that are catalyzed by the SCT1- and
GPT2-encoded glycerol-3-phosphate acyl-
transferases and the SLC1- and ALE1-encoded
lysophospholipid acyltransferases (38–44). In
the de novo pathways, all membrane phos-
pholipids are synthesized from PA via the
liponucleotide intermediate CDP-DAG. The
CDS1-encoded CDP-DAG synthase catalyzes
the formation of CDP-DAG from PA using
the nucleotide CTP for the donation of the
CMP moiety (45, 46). CDP-DAG may then
donate its phosphatidyl moiety to inositol
to form PI (47) in the reaction catalyzed by
the PIS1-encoded PI synthase (48, 49). The
inositol used in this reaction is derived from
glucose-6-phosphate via the reactions catalyzed

YEAST GENE/PROTEIN NOMENCLATURE

S. cerevisiae genes are designated by three uppercase italicized
letters followed by a number (e.g., PIS1 for phosphatidylinositol
synthase 1), ideally describing the biochemical/molecular func-
tion of their protein products. Lowercase italicized letters des-
ignate a recessive mutation in the gene (e.g., pis1). Some yeast
genes (e.g., CHO1 and OPI3) are named after their mutant
phenotypes (e.g., cho1 mutants require choline and opi3 mu-
tants overproduce and excrete inositol, respectively) or other ge-
netic phenotypes. For genes that have several names (e.g., the
gene for PS synthase has two names: CHO1 and PSS1) because
of independent identification and naming, the standard name
is the one generally described first, and the other names are
designated as aliases (see the Saccharomyces Genome Database,
http://www.yeastgenome.org/). The protein product of a yeast
gene is designated by the gene acronym followed by the letter p
(e.g., Pis1p, Cho1p, Opi3p).

by the INO1-encoded inositol-3-phosphate
synthase (50, 51) and the INM1-encoded
inositol-3-phosphate phosphatase (52). Alter-
natively, the inositol used in the reaction may
be obtained exogenously via the ITR1- and
ITR2-encoded inositol permeases (53). CDP-
DAG may also donate its phosphatidyl moiety
to glycerol-3-phosphate to form phosphatidyl-
glycerophosphate (PGP) in the reaction
catalyzed by the PGS1-encoded PGP synthase
(54, 55). PGP is then dephosphorylated to
PG by the GEP4-encoded PGP phosphatase
(56). The CRD1-encoded CL synthase (57–59)
catalyzes the reaction between PG and another
molecule of CDP-DAG to generate CL. The
final enzyme that utilizes CDP-DAG in the
pathway is the CHO1-encoded PS synthase
(60–62), which catalyzes the formation of PS by
displacement of CMP from CDP-DAG with
Ser (63). PS is then decarboxylated to PE by
the PSD1- (64, 65) and PSD2-encoded (66) PS
decarboxylase enzymes. PE is then converted
to PC by the three-step S-adenosyl methionine
(AdoMet)-dependent methylation reactions
(67), whereby the first methylation reaction is
catalyzed by the CHO2-encoded PE methyl-
transferase (68, 69) and the last two methylation
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Figure 2
Phospholipid synthesis pathways in S. cerevisiae. The pathways shown for the
synthesis of phospholipids include the relevant steps discussed in this review.
The genes that are known to encode enzymes catalyzing individual steps in the
lipid synthesis pathways are indicated. The UASINO-containing genes that are
subject to regulation by the Ino2p-Ino4p activator complex and the Opi1p
repressor are shown (blue). Abbreviations: CDP-DAG, CDP-diacylglycerol;
Cho, choline; CL, cardiolipin; Gro, glycerol; DHAP, dihydroxyacetone
phosphate; Etn, ethanolamine; Glc, glucose; Ins, inositol; PA, phosphatidate;
PC, phosphatidylcholine; PE, phosphatidylethanolamine;
PG, phosphatidylglycerol; PGP, phosphatidylglycerophosphate;
PDE, phosphatidyldimethylethanolamine; PI, phosphatidylinositol;
PME, phosphatidylmonomethylethanolamine; PS, phosphatidylserine;
TAG, triacylglycerol; UASINO, an inositol-responsive upstream activating
sequence.

reactions are catalyzed by the OPI3-encoded
phospholipid methyltransferase (68, 70).

PE and PC are also synthesized from ex-
ogenously supplied ethanolamine and choline
[via the HNM1-encoded choline permease
(71, 72)], respectively, by way of the CDP-
ethanolamine and CDP-choline branches of

the Kennedy pathway (Figure 2). The EKI1-
encoded ethanolamine kinase (73) and the
CKI1-encoded choline kinase (74) enzymes
phosphorylate ethanolamine and choline with
ATP to form phosphoethanolamine and phos-
phocholine, respectively. These intermediates
are then activated with CTP to form CDP-
ethanolamine and CDP-choline, respectively,
by the ECT1-encoded phosphoethanolamine
cytidylyltransferase (75) and the PCT1-encoded
phosphocholine cytidylyltransferase (76). Fi-
nally, CDP-ethanolamine and CDP-choline
react with DAG to form PE and PC, respec-
tively, in the reactions catalyzed by the EPT1-
encoded ethanolamine phosphotransferase (77,
78) and the CPT1-encoded choline phospho-
transferase (79, 80).

The CTP required for the synthesis of
CDP-DAG, CDP-ethanolamine, and CDP-
choline is derived from UTP by the URA7-
(81) and URA8-encoded (82) CTP synthetase
enzymes. The DAG used for the synthesis of
PE and PC via the Kennedy pathway is de-
rived from PA by the PAH1-encoded PA phos-
phatase (24).1 The DAG generated in the PA
phosphatase reaction may be converted back to
PA by the DGK1-encoded DAG kinase2 (83,
84) or used for the synthesis of the neutral
lipid TAG (24) by acyltransferase enzymes en-
coded by DGA1 and LRO1 (85). The ARE1- and
ARE2-encoded acyltransferase enzymes, which
are primarily responsible for the synthesis of er-
gosterol esters, can also acylate DAG to form
TAG (85).

1PA phosphatase is distinguished in catalytic and physiologi-
cal functions from the DPP1- and LPP1-encoded lipid phos-
phate phosphatase enzymes that dephosphorylate a broad
spectrum of substrates (including PA, lysoPA, DAG py-
rophosphate, sphingoid base phosphates, and isoprenoid
phosphates) by a distinct catalytic mechanism that does not
require divalent cations (16, 31, 213, 214). The DPP1- and
LPP1-encoded lipid phosphate phosphatase enzymes are as-
sociated with the vacuole and Golgi membranes, respectively,
and are thought to be involved with lipid signaling (16, 31).
2The yeast DAG kinase differs from the enzyme in animals,
plants, worms, flies, and bacteria in that the yeast enzyme
utilizes CTP instead of ATP as the phosphate donor in the
reaction (83, 84).
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UASINO: an
inositol-responsive
cis-acting element
found in the promoter
of several phospholipid
synthesis genes

Opi1p: a repressor
protein that interacts
with Ino2p to
attenuate
transcriptional
activation by the
Ino2p-Ino4p complex

Ino2p-Ino4p
heterodimer: a
complex of regulatory
proteins that interact
with the UASINO
element in the
promoter to activate
transcription

The CDP-DAG pathway is primarily used
for the synthesis of PE and PC when cells
are grown in the absence of ethanolamine and
choline (12, 27, 28, 86). Yet, the Kennedy path-
way contributes to the synthesis of PE and PC
when these precursors are not supplemented
(37, 73, 87). For example, the PC synthesized
by way of the CDP-DAG pathway is con-
stantly hydrolyzed to choline and PA (87, 88)
by the SPO14-encoded (89, 90) phospholipase
D. The choline is incorporated back into PC
via the CDP-choline branch of the Kennedy
pathway, and the PA is converted to other phos-
pholipids via the intermediates CDP-DAG and
DAG (12, 15, 87). Choline may also be de-
rived from PC through the phospholipase B and
glycerophosphocholine phosphodiesterase ac-
tivities encoded by NTE1 (91) and GDE1 (92),
respectively (93–95). Analysis of mutants indi-
cates that the physiological roles of PC syn-
thesized by the two pathways may be different
(93, 96, 97).

The Kennedy pathway plays a critical role
in the synthesis of PE and PC when the
enzymes in the CDP-DAG pathway are de-
fective (12, 36). For example, the cho2 opi3
mutant deficient in the three-step methyla-
tion of PE requires choline supplementation
for growth and synthesizes PC via the CDP-
choline branch of the Kennedy pathway (68–
70, 98). The cho1 and psd1 psd2 mutants de-
ficient in the synthesis of PS (99, 100) and
PE (66, 101), respectively, can synthesize PC
if they are supplemented with ethanolamine
or choline. The ethanolamine is incorporated
into PE via the CDP-ethanolamine branch of
the Kennedy pathway, and the PE is subse-
quently methylated to form PC. Mutants de-
fective in the CDP-DAG pathway can also
synthesize PE or PC when they are supple-
mented with lysoPE, lysoPC, or PC with short
acyl chains. LysoPE and lysoPC transported
into the cell are acylated to PE and PC, re-
spectively, by the ALE1-encoded lysophospho-
lipid acyltransferase, which also utilizes lysoPA
as a substrate (41, 42, 102, 103). Short acyl
chain PC, which is not incorporated directly
into membranes, is remodeled with 16- and

18-carbon acyl chains (104) by the activities
of phospholipase B and lysophospholipid acyl-
transferase (94, 95, 105). The Kennedy pathway
mutants (i.e., cki1 eki1 and cpt1 ept1) defective in
both the CDP-choline and CDP-ethanolamine
branches can synthesize PC only by the CDP-
DAG pathway (73, 106, 107). However, unlike
the CDP-DAG pathway mutants (66, 68–70,
98–101), the Kennedy pathway mutants do not
exhibit any auxotrophic requirements and have
an essentially normal complement of phospho-
lipids (73, 107).

GENETIC AND BIOCHEMICAL
MECHANISMS THAT CONTROL
PHOSPHOLIPID SYNTHESIS

The synthesis of phospholipids is regulated by
controlling the expression of enzymes and/or
by modulating the catalytic activities. The ex-
pression of phospholipid synthesis genes is con-
trolled by multiple factors, including carbon
source, nutrient availability, growth stage, pH,
and temperature (12, 13, 18, 20, 95, 108, 109).
The mechanisms responsible for the regula-
tion of gene expression include a number of
cis- and trans-acting elements (14, 18, 20). Of
these, the inositol-responsive cis-acting element
(UASINO) and the corresponding trans-acting
factors (Ino2p, Ino4p, Opi1p) have been well
characterized for transcriptional regulation of
phospholipid synthesis genes and are discussed
here.

Genes encoding enzymes in the CDP-DAG
(e.g., CDS1, CHO1, PSD1, CHO2, and OPI3)
and Kennedy (e.g., EKI1, EPT1, CKI1, CPT1)
pathways, and in the synthesis of PI (e.g.,
INO1), as well as the genes encoding the inos-
itol (ITR1) and choline/ethanolamine (HNM1)
permeases are coordinately regulated through a
UASINO element in the promoter. The UASINO

element binds the Ino2p-Ino4p heterodimer
that activates transcription, and transcriptional
activation is repressed when Opi1p binds to
Ino2p (14, 18). Thus, the opi1 mutant exhibits
derepressed levels of the UASINO-containing
genes, whereas the ino2 and ino4 mutants exhibit
repressed levels of UASINO-containing genes
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Nuclear/endoplasmic
reticulum (ER)
membrane: the outer
nuclear membrane
that is continuous with
the endoplasmic
reticulum membrane

(28, 29, 36, 37). Because of the constitutive
derepression of INO1 expression, opi1 mutants
produce excessive amounts of inositol and ex-
crete it into the growth medium, but ino2 and
ino4 mutants lacking transcriptional activation
of INO1 are auxotrophic for inositol (28, 29,
36, 37). These inositol-related phenotypes are
commonly used as indicators of the misregula-
tion of UASINO-containing genes (36, 37).

The repressor function of Opi1p is con-
trolled by its cellular location (14, 18, 110).
Opi1p, which lacks a membrane-spanning do-
main (111), is found at the nuclear/endoplasmic
reticulum (ER) membrane and within the nu-
cleus (110, 112, 113). It associates with the
membrane through interaction with the inte-
gral membrane protein Scs2p, and its mem-
brane association is stabilized by interaction
with PA (110, 112). The involvement of Scs2p
in the Opi1p-mediated regulation of phos-
pholipid synthesis is evident because the scs2
mutant is auxotrophic for inositol, a pheno-
type shown by the constitutive repression of
INO1 (114–116). This observation predicts a
nuclear localization of Opi1p for its increased
repressor function. Interestingly, the scs2 mu-
tant also shows an increase in PC synthesis via
the Kennedy pathway, and a block in PC syn-
thesis (e.g., cki1 scs2) restores normal INO1 ex-
pression (116). As discussed above, PC synthe-
sis via the Kennedy pathway consumes PA via
DAG, and a block in the Kennedy pathway
should result in PA accumulation. Thus, the
suppression of inositol auxotrophy for the scs2
mutant might be explained by a change in the
localization of Opi1p to the nuclear/ER mem-
brane through interaction with PA.

Genetic and biochemical data indicate that
PA has a major effect on the localization and
function of Opi1p (14). According to a recent
model (Figure 3) (14, 18, 110), Opi1p is teth-
ered to the nuclear/ER membrane via interac-
tions with Scs2p and PA. When PA levels are
reduced, Opi1p is released from the membrane
and enters into the nucleus, where it attenu-
ates transcription by binding to Ino2p. That
PA governs the Opi1p-mediated regulation of
UASINO-containing genes is supported by the

analyses of mutants defective in the CDP-DAG
and Kennedy pathways (14). For example, mu-
tants (e.g., cho1, psd1, cho2, and opi3) defective in
any step of the CDP-DAG pathway exhibit in-
creased levels of PA and excrete inositol owing
to constitutive derepression of INO1 expression
(36, 37). However, the inositol excretion phe-
notype can be alleviated when the mutants are
supplemented with a water-soluble precursor
(e.g., ethanolamine and choline) that channels
PA to phospholipid synthesis via the Kennedy
pathway (12, 37). In combination with a mu-
tation in the SEC14-encoded PI/PC transfer
protein, CDP-choline pathway mutants (e.g.,
cki1 sec14, pct1 sec14, and cpt1 sec14) excrete in-
ositol and choline, and this phenotype is de-
pendent on the excess productions of PA and
choline by the SPO14-encoded phospholipase
D-mediated turnover of PC (87, 117).

The level of PA can be directly affected by
the activities of lysoPA acyltransferase, CDP-
DAG synthase, PA phosphatase, DAG kinase,
and phospholipase D. Of these enzymes, PA
phosphatase and DAG kinase have emerged
as key regulators of PA in the expression of
UASINO-containing genes. Cells lacking the
PAH1-encoded PA phosphatase activity con-
tain an elevated level of PA and exhibit the
derepression of UASINO-containing phospho-
lipid synthesis genes (e.g., INO1, OPI3, and
INO2) (24, 108, 118). By contrast, the overex-
pression of PA phosphatase activity causes the
loss of PA, the repression of INO1 expression,
and inositol auxotrophy (119). The lack of PA
phosphatase activity also causes the abnormal
expansion of the nuclear/ER membrane (108,
118), underscoring the importance of phospho-
lipid synthesis to organelle synthesis and struc-
ture. The DGK1-encoded DAG kinase coun-
teracts the role that the PAH1-encoded PA
phosphatase plays in controlling PA content
and the transcriptional regulation of UASINO-
containing genes (83, 84). The overexpression
of DAG kinase causes an increase in PA con-
tent, the derepression of UASINO-containing
genes, and the abnormal nuclear/ER membrane
expansion (83) as in those shown in the pah1
mutant (108, 118). Yet, the overexpression of
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DAG kinase activity complements the inositol
auxotrophy caused by the overexpression of PA
phosphatase activity (83), whereas the loss of
DAG kinase activity (e.g., in the dgk1 muta-
tion) complements the phenotypes caused by
the loss of PA phosphatase activity (e.g., in the
pah1 mutation) (83, 84).

The PA-mediated regulation of UASINO-
containing genes is triggered by the availability
of inositol, zinc, and nitrogen as well as the
growth stage (12, 18, 20). For example, the
supplementation of the essential nutrient zinc
to the growth medium activates the expression
of UASINO-containing genes (20, 120). By con-
trast, inositol supplementation represses the
gene expression (12, 14, 18), and the repressive
effect is enhanced by ethanolamine or choline
supplementation (12). The UASINO-containing
genes are maximally expressed in the exponen-

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 3
Model for the phosphatidate (PA)-mediated
regulation of UASINO-containing phospholipid
synthesis genes. (a) Under growth conditions
whereby the levels of PA are increased, the Opi1p
repressor is tethered to the nuclear/endoplasmic
reticulum (ER) membrane via interactions with
Scs2p and PA, allowing the maximal expression (bold
arrow) of UASINO-containing genes (blue) by the
Ino2p-Ino4p activator complex. (b) Under growth
conditions whereby the levels of PA are reduced,
Opi1p is dissociated from the nuclear/ER membrane
and enters into the nucleus, where it binds to
Ino2p and attenuates (thin arrow) the transcriptional
activation by the Ino2p-Ino4p complex. The
PA level in the cell is decreased by the stimulation
of phosphatidylinositol (PI) synthesis in response
to inositol (Ins) supplementation and by the Zap1p-
mediated induction of PIS1 that occurs in response
to zinc depletion. The regulations that occur
in response to zinc depletion and stationary phase
occur in the absence of inositol supplementation.
PA phosphatase (PAP) and DAG kinase (DGK)
play major roles in the regulation of PA content
and thereby in the transcriptional regulation
of UASINO-containing genes. CDP-DAG, CDP-
diacylglycerol; PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PS, phosphatidylserine;
TAG, triacylglycerol; UASINO, inositol-responsive
element; UASZRE, zinc-responsive element; Zap1p,
a transcriptional activator protein that interacts with
the UASZRE.

tial phase of growth, whereas they are repressed
in the stationary phase of growth (12, 14, 18). In
many cases, it is the biochemical regulation of a
phospholipid synthesis enzyme that ultimately
controls the cellular level of PA. The following
examples typify this theme of regulation.

Inositol-Mediated Regulation

Inositol is an essential phospholipid precursor
in yeast cells because it is incorporated, through
the major phospholipid PI, into polyphos-
phoinositides (30), sphingolipids (121), and
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Zap1p:
a transcriptional
activator protein that
interacts with the
UASZRE

UASZRE:
a zinc-responsive
cis-acting element
found in the promoter
of some phospholipid
synthesis genes

glycosylphosphatidylinositol anchors (122).
The syntheses and physiological roles of these
inositol-containing membrane components are
covered in recent review articles (30, 121, 122).
As discussed above, inositol is synthesized in
the cell, but when supplemented to the growth
medium, it affects the de novo synthesis of inos-
itol and membrane phospholipid synthesis (12,
13, 18, 28, 36). Inositol supplementation causes
an increase in the synthesis of PI by a mecha-
nism that involves increased substrate availabil-
ity for PI synthase (123). In addition, inositol di-
rectly inhibits the activity of PS synthase, which
favors the utilization of their common substrate
CDP-DAG for PI synthesis (123). This bio-
chemical regulation draws upon the PA content
through CDP-DAG and causes the transloca-
tion of Opi1p into the nucleus for repression
of UASINO-containing genes (14, 110). Overall,
the repression of the UASINO-containing genes
leads to a decrease in the synthesis of enzymes
used in both the CDP-DAG and Kennedy path-
ways, and this repression causes changes, in-
cluding an increase in PI and decreases in PA,
PS, and PC, in the phospholipid composition
(12, 123). Changes in membrane phospholipid
composition are also the result of phospholipid
turnover that is mediated by enzymes, such as
the NTE1-encoded phospholipase B (94, 124–
126). In fact, the activity of this phospholi-
pase B, which does not have a direct effect on
the metabolism of PA, attenuates the repressor
function of Opi1p when PC synthesis via the
Kennedy pathway is stimulated by choline sup-
plementation at an elevated temperature (126).
Inositol supplementation also has global effects
on cell physiology, including the unfolded pro-
tein response and cell wall integrity pathways
(13, 127, 128).

Zinc-Mediated Regulation

The synthesis of phospholipids is coordinately
regulated with the expression of zinc trans-
porters that control zinc homeostasis (20,
129). Cells grown in zinc-depleted medium
exhibit the induced expression of zinc trans-
porters (e.g., Zrt1p, Zrt2p, Fet4p, and Zrt3p)

to maintain the cytoplasmic levels of zinc
(130, 131). At the same time, zinc depletion
causes alterations in membrane phospholipid
composition that are brought about by changes
in the expression of phospholipid synthesis
enzyme activities (20, 120, 132–134). The
regulation of UASINO-containing genes by
zinc involves the control of PA content through
the activation of PIS1-encoded PI synthase
and PAH1-encoded PA phosphatase activities.
This regulation, which occurs in the absence
of inositol supplementation, is mediated by the
zinc-sensing and zinc-inducible transcriptional
activator Zap1p and the zinc-responsive cis-
acting element (UASZRE) (129). Zinc depletion
causes increased expressions of PIS1 (133) and
PAH1 (A. Soto-Cardalda & G.M. Carman,
unpublished data) by the interaction of Zap1p
with a UASZRE in the promoter. The net results
are the Opi1p-mediated repression of UASINO-
containing genes and a decrease in the activities
of the CDP-DAG pathway enzymes (120). The
major effects of zinc depletion on phospholipid
composition include an increase in PI and a de-
crease in PE (120). Although enzyme activities
in the CDP-DAG pathway are reduced by zinc
depletion, the amount of PC is not significantly
affected (120). Maintenance of a normal PC
content is attributed to the Zap1p-mediated in-
ductions of choline kinase and ethanolamine ki-
nase for PC synthesis via the Kennedy pathway
(132, 135). Like PIS1 and PAH1, the CKI1 and
EKI1 genes contain a UASZRE in their promot-
ers that interacts with Zap1p for gene activation
(132, 135). Any effect that Opi1p would have
on the expressions of CKI1 and EKI1 (because
they contain UASINO elements) is overcome
by the derepression by Zap1p (132, 135).

The fact that the zinc transporters are
localized to cellular membranes raises the
question as to whether zinc-mediated alter-
ations in phospholipid composition might reg-
ulate transporter function. Several reports have
shown that PE plays a major role in trans-
porter function. For example, PE is required for
amino acid transporter function in S. cerevisiae
(136, 137), and its content in Escherichia coli
is required for function of the α-aminobutyric
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acid (138), lactose (139, 140), and phenylalanine
(141) transporters. The availability of mutants
(e.g., eki1, psd1, psd2) defective in PE synthe-
sis should facilitate studies to address the im-
portance of changing PE content for the zinc
transport function in S. cerevisiae.

CTP-Mediated Regulation

In S. cerevisiae, the nucleotide CTP plays
a critical role in phospholipid synthesis as
the direct precursor of the high-energy in-
termediates CDP-DAG, CDP-choline, and
CDP-ethanolamine that are used in the CDP-
DAG and Kennedy pathways (Figure 2) (17).
It is also used as the phosphate donor for the
synthesis of PA by the DAG kinase (84). CTP
synthetase (81, 82), which produces CTP, is
allosterically inhibited by the product (142,
143), and this regulation ultimately determines
the intracellular concentration of CTP (142,
144). CTP inhibits the CTP synthetase activity
by increasing the positive cooperativity of
the enzyme for UTP and by simultaneously
decreasing the enzyme’s affinity for UTP (142,
143). However, CTP synthetases containing
an E161K mutation are less sensitive to CTP
product inhibition (145), and cells expressing
the mutant enzymes exhibit a 6- to 15-fold
increase in their CTP level (145). They also
show alterations in the synthesis of membrane
phospholipids, which include a decrease in the
synthesis of PS and an increase in the synthesis
of PC, PE, and PA (145). The decrease in the
synthesis of PS results from direct inhibition
of PS synthase activity by CTP (144), and this
inhibition favors the synthesis of phospholipids
by the Kennedy pathway. The increase in PC
synthesis is ascribed to a higher utilization
of the CDP-choline branch of the Kennedy
pathway owing to the stimulation of phos-
phocholine cytidylyltransferase activity (144,
145) by the increased substrate availability of
CTP (144, 146). Likewise, the increase in PE
synthesis could be attributed to stimulation
of phosphoethanolamine cytidylyltransferase
activity. The increase in PA content may result
from the stimulation of DAG kinase activity

by increased availability of its substrate CTP
(84). The cells expressing the E161K mutant
enzyme excrete inositol (145), a characteristic
phenotype that typifies the misregulation of
UASINO-containing phospholipid synthesis
genes when cells accumulate an excess of PA
(14). It is unclear whether UASINO-containing
genes in the CDP-DAG and Kennedy path-
ways are derepressed in CTP overproducing
cells, but the overriding regulation that governs
the utilization of the two pathways appears to
be biochemical in nature.

CDP-Diacylglycerol-Mediated
Regulation

The PA phosphatase and DAG kinase enzymes
are differentially regulated by CDP-DAG.
This liponucleotide intermediate stimulates PA
phosphatase activity (147) but inhibits DAG ki-
nase activity (84). However, the opposing reg-
ulations of PA metabolic enzymes favor a de-
crease in PA content and the Opi1p-mediated
repression of UASINO-containing genes. One
of the UASINO-containing genes that are re-
pressed by Opi1p is CDS1 (148), which codes
for CDP-DAG synthase (46). Thus, the regu-
lation of its own expression provides a mech-
anism for controlling the synthesis of CDP-
DAG from PA and the CDP-DAG-dependent
synthesis of phospholipids. This regulation is
supported by the genetic evidence that a condi-
tional cds1 mutant defective in CDP-DAG syn-
thase activity exhibits an elevated PA content
and the derepression of UASINO-containing
genes (149, 150). The increased DAG levels
caused by the CDP-DAG-mediated regulation
of PA phosphatase and DAG kinase activities
would be channeled to phospholipids via the
Kennedy pathway or to the neutral lipid TAG.

S-Adenosyl-L-Homocysteine-
Mediated Regulation

S-Adenosyl-L-homocysteine (AdoHcy) is a
product of the AdoMet-dependent methy-
lation reactions that are catalyzed by the
CHO2-encoded PE methyltransferase and
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Phosphorylation: a
protein modification
that regulates the
functions of Opi1p and
key phospholipid
synthesis enzymes

OPI3-encoded phospholipid methyltransferase
in the CDP-DAG pathway (Figure 2). Ado-
Hcy, which is removed by the SAH1-encoded
AdoHcy hydrolase (23), is a competitive in-
hibitor of the methyltransferase enzymes (151).
Thus, downregulation of the AdoHcy hydro-
lase causes the accumulation of AdoHcy and
the inhibition of PC synthesis, which leads to
an increase in PA content and the derepression
of UASINO-containing genes (23). Although the
effects of AdoHcy on phospholipid composi-
tion have not been addressed, its accumulation
causes an increase in TAG synthesis and lipid
droplet content (23).

REGULATION OF
PHOSPHOLIPID SYNTHESIS
BY PHOSPHORYLATION

Phosphorylation is a major covalent posttrans-
lational modification by which the activity
of an enzyme or a transcription factor is
regulated (152–157). Enzyme phosphorylation
can affect catalytic activity and/or subcellular
localization. Phosphorylation of a regulatory
protein can control its localization, stability,
and interaction with DNA or other proteins.
Data indicate that phospholipid synthesis in
yeast is regulated by phosphorylation at Ser and
Thr residues. The protein kinases known to
regulate the function of catalytic and regulatory
proteins in phospholipid synthesis include pro-
tein kinase A, protein kinase C, casein kinase II,
and cyclin-dependent kinase. Protein kinase A
is the principal mediator of signals transmitted
through the RAS/cAMP pathway (158, 159).
Its activity is required for proper regulation of
growth, progression through the cell cycle, and
development in response to various nutrients
(158, 159). Protein kinase A consists of two cat-
alytic subunits (encoded by TPK1, TPK2, and
TPK3) and two regulatory subunits (encoded
by BCY1). Elevated cAMP levels, which are
controlled by adenylate cyclase (encoded by
CYR1) via the RAS-cAMP pathway, promote
dissociation of the regulatory subunits from
the catalytic subunits and thus allow the
catalytic subunits to phosphorylate a variety of

substrates (158, 159). Protein kinase C (en-
coded by PKC1) is essential for the progression
of the cell cycle (160) and plays a role in
cell wall formation (161). Casein kinase II is
essential for cell viability (162–164), and the
enzyme is composed of two catalytic (encoded
by CKA1 and CKA2) and two regulatory (CKB1
and CKB2) subunits (165–168). The CDC28
(CDK1)-encoded cyclin-dependent kinase is
a master regulator of cell-cycle transitions
whose activity is governed by interactions
with various G1 and B-type cyclins (169).
Phospholipid synthesis enzymes, which are
regulated by phosphorylation, include PS
synthase, CTP synthetase, choline kinase, and
PA phosphatase. The transcriptional repressor
Opi1p is also regulated by phosphorylation.

Opi1p Phosphorylation

The Opi1p repressor plays a negative
regulatory role in the expression of UASINO-
containing genes involved in the synthesis of
membrane phospholipids (111, 170). In vivo
labeling studies have shown that Opi1p is phos-
phorylated at multiple Ser residues (171, 172).
In vitro studies indicate that protein kinase A
(172), protein kinase C (171), and casein kinase
II (173) play major roles in the phosphorylation.
The major sites of Opi1p phosphorylation in-
clude Ser10 (for casein kinase II), Ser26 (for pro-
tein kinase C), and Ser31 and Ser251 (for protein
kinase A) (Figure 4) (171–173). The analysis of
opi1 cells expressing phosphorylation-deficient
(e.g., Ser → Ala mutations) forms of Opi1p
indicates that protein kinases A and C are
responsible for ∼50% of the total phosphory-
lation that occurs in vivo (171, 172). By contrast,
phosphorylation by casein kinase II does not
have a major effect on the extent of Opi1p
phosphorylation in vivo (173). In vitro the mu-
tation (S26A) in the protein kinase C target site
reduces the phosphorylation of Opi1p by pro-
tein kinase A. Likewise, the mutations (S31A
and S251A) in protein kinase A target sites re-
duce the phosphorylation by protein kinase C.
By contrast, the mutation (S10A) in the casein
kinase II target site does not affect the in vitro
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Figure 4
Domain structures and phosphorylation sites of Opi1p and phospholipid synthesis enzymes. Opi1p (with
404 amino acids) contains domains for interactions with Sin3p, phosphatidate (PA), Scs2p, and Ino2p. It also
contains Ser (S) residues that are sites for phosphorylation by protein kinases A and C and casein kinase II.
Phosphatidylserine (PS) synthase (with 277 amino acids) contains a CDP-alcohol phosphotransferase
(P-transferase) domain and Ser residues for phosphorylation by protein kinase A. CTP synthetase (with 579
amino acids) contains the CTP synthetase and glutamine amide transfer domains as well as the Ser residues
for phosphorylation by protein kinases A and C. Choline kinase (with 582 amino acids) contains the
phosphotransferase and choline kinase (CK) domains as well as the Ser residues for phosphorylation by
protein kinases A and C. PA phosphatase (with 862 amino acids) contains an amphipathic helix (H), NLIP
and haloacid dehalogenase (HAD)-like domains, and 16 Ser/Thr residues for phosphorylation. The seven
sites denoted with an asterisk are within the minimal Ser/Thr-Pro motif that is a target of cyclin-dependent
kinases.
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phosphorylation by either protein kinase A or
protein kinase C. Furthermore, the mutations
in the protein kinase A or protein kinase C
target sites do not affect the phosphorylation
of Opi1p by casein kinase II. These results
indicate that phosphorylation by protein
kinase A stimulates phosphorylation by protein
kinase C and vice versa and that the phos-
phorylations by these kinases are independent
of the phosphorylation by casein kinase II.
The hierarchical phosphorylations by protein
kinases A and C provide an explanation as to
why the protein kinase A and protein kinase
C phosphorylation site mutations affect the
overall phosphorylation state of Opi1p in vivo
and as to why the casein kinase II site mutation
does not have a major effect on the overall
phosphorylation state of the protein.

The phosphorylation of Opi1p at Ser10,
Ser31, and Ser251 stimulates its repressor func-
tion (172), whereas phosphorylation at Ser26 at-
tenuates its repressor function (171). The regu-
lation of Opi1p function via phosphorylation by
protein kinases A and C occurs in cells grown in
the absence and presence of inositol (171, 172),
whereas the regulation via phosphorylation by
casein kinase II occurs only when cells are
grown in the absence of inositol (173). Opi1p
possesses binding domains for PA, Scs2p,
Ino2p, and Sin3p (Figure 4) (110, 112, 174,
175), which affect its localization and function.
Whether the phosphorylation of Opi1p by pro-
tein kinases A and C, as well as by casein kinase
II, influences the interaction of Opi1p with its
binding partners warrants further investigation.

Phosphatidylserine Synthase
Phosphorylation

The CHO1-encoded PS synthase is one of the
most highly regulated enzymes for the synthe-
sis of phospholipids in S. cerevisiae (12, 15, 176).
This ER-associated enzyme catalyzes the for-
mation of PS in the Mn2+-dependent sequen-
tial reaction that displaces CMP from CDP-
DAG with Ser (60–62, 177, 178). PS synthase
possesses a CDP-alcohol phosphotransferase
domain that is shared by other phospholipid

synthesis enzymes (e.g., PI synthase and PGP
synthase) catalyzing similar types of reactions
(Figure 4) (179). PS synthase exists in two
forms that differ in the electrophoretic mobil-
ity (30 kDa and 27 kDa). The 30-kDa form of
PS synthase is produced from the 27-kDa form
by protein kinase A–mediated phosphorylation
at Ser46 and Ser47 (180). The abundance of the
two forms is dependent on the cell growth phase
but not on the regulated expression of CHO1
by inositol supplementation or respiratory de-
ficiency (180). The 30-kDa and 27-kDa forms
are present in exponential phase cells, whereas
the 27-kDa form is primarily present in the sta-
tionary phase cells.

Phosphorylation of PS synthase by protein
kinase A inhibits its catalytic activity (181),
and the inhibitory effect of phosphorylation
is abolished by S46A/S47A mutations (180).
The expression of phosphorylation-deficient
PS synthase shows that its cellular level is about
twofold lower than that of the wild-type en-
zyme, resulting in a reduction of the total PS
synthase activity. The lower PS synthase activ-
ity in cells expressing the S46A/S47A mutant
enzyme correlates with a reduction in PS rela-
tive to PI and a decrease in PS synthesis in vivo
(180). These observations support the conclu-
sion that protein kinase A phosphorylation has
dual roles in the regulation of PS synthase. On
the one hand, phosphorylation inhibits PS syn-
thase activity, but on the other hand, it stabi-
lizes the abundance of the enzyme. The dual
regulation of PS synthase results in a net in-
crease in cellular PS synthase activity, which
must be important to the optimal function of
PS synthase during the exponential phase of
cell growth (182). When the need for phos-
pholipid synthesis is reduced in the stationary
phase (183), the total amount of PS synthase is
reduced because of a lack of phosphorylation
and, at the same time, because of reduced gene
repression (184).

CTP Synthetase Phosphorylation

CTP synthetase that is encoded by URA7 and
URA8 is an essential cytosolic enzyme that

870 Carman · Han

A
nn

u.
 R

ev
. B

io
ch

em
. 2

01
1.

80
:8

59
-8

83
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 R

ut
ge

rs
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
 o

n 
06

/1
6/

11
. F

or
 p

er
so

na
l u

se
 o

nl
y.



BI80CH34-Carman ARI 16 May 2011 14:8

catalyzes a committed step in the synthesis of
membrane phospholipids in S. cerevisiae (81,
82). The enzyme contains conserved CTP syn-
thetase and glutamine amide transfer domains
that are involved in catalysis (Figure 4) (17).
CTP synthetase catalyzes a complex set of re-
actions, including the ATP-dependent trans-
fer of the amide nitrogen from glutamine (i.e.,
the glutaminase reaction) to the C-4 position
of UTP to generate CTP (185, 186). GTP
stimulates the glutaminase reaction by accel-
erating the formation of a covalent glutaminyl
enzyme intermediate (185, 186). The URA7-
encoded CTP synthetase is phosphorylated by
protein kinase A and by protein kinase C (187,
188). The phosphorylations by these protein
kinases stimulate CTP synthetase activity by
two- to threefold (187, 188). Kinetic analyses
show that the mechanisms for stimulation of
CTP synthetase activity by these protein ki-
nases are the same (187, 188). Phosphorylated
CTP synthetase shows an increase in the Vmax

with respect to the substrates UTP and ATP,
a decrease in the Km value for ATP, and a
decrease in the positive cooperativity of the
enzyme for ATP (187, 188). Moreover, the
phosphorylation of CTP synthetase by pro-
tein kinases A and C attenuates the regula-
tion of its activity by CTP product inhibition
(187, 188).

The effects of phosphorylation on the
regulation of CTP synthetase activity involve
the oligomerization of the enzyme (142, 189).
CTP synthetase exists as a dimer in the absence
of ATP and UTP, but the enzyme forms a
tetramer in the presence of saturating con-
centrations of the substrates (142, 189). The
kinetics of enzyme tetramerization correlates
with the kinetics of enzyme activity. The
product CTP does not inhibit the ATP/UTP-
dependent tetramerization of the enzyme (142,
189). Phosphorylation of native CTP syn-
thetase with protein kinases A and C facilitates
the nucleotide-dependent tetramerization,
whereas dephosphorylation of native CTP
synthetase prevents its nucleotide-dependent
tetramerization (189). This regulation

correlates with the inactivation of CTP
synthetase activity (189). The rephosphory-
lation of the enzyme with protein kinases A
and C results in a partial restoration of the
nucleotide-dependent tetramerization of the
enzyme, and this correlates with the partial
restoration of CTP synthetase activity (189).

Ser424 is a target site for both protein kinase
A and protein kinase C (190, 191). The phos-
phorylation of this site is required to maintain
optimum CTP synthetase activity in vivo (190,
191). Protein kinase C also phosphorylates
the enzyme at Ser36, Ser330, Ser354, and Ser454

(192). Biochemical and physiological analyses
of Ser→Ala mutations have shown that phos-
phorylations at the Ser residues, except Ser330,
result in the stimulation of CTP synthetase ac-
tivity (191, 192). The phosphorylation at Ser330

results in the inhibition of the enzyme activ-
ity (192). Moreover, in vivo studies using these
mutants have shown that the regulatory effects
of the phosphorylations at specific sites have
an impact on the pathways by which mem-
brane phospholipids are synthesized. Phospho-
rylations at Ser36, Ser354, and Ser454 corre-
late with an increase in PC synthesis via the
Kennedy pathway (191, 192). In contrast, phos-
phorylation at Ser330 correlates with a de-
crease in the utilization of the Kennedy pathway
(192).

Choline Kinase Phosphorylation

The CKI1-encoded choline kinase (74, 193) is a
cytosolic enzyme that plays a regulatory role
in the synthesis of PC via the CDP-choline
branch of the Kennedy pathway (12, 86, 194).
The enzyme catalyzes the phosphorylation of
choline with ATP to form phosphocholine and
ADP (195). Choline kinase contains conserved
phosphotransferase and choline kinase motifs
(196–198) that are involved in its catalytic func-
tion (Figure 4) (198–200). Choline kinase is
phosphorylated at multiple Ser residues in vivo,
and the phosphorylations at some of these sites
are mediated by protein kinases A (201) and C
(202).
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Protein kinase A phosphorylates choline ki-
nase at Ser30 and Ser85, with the former site
having the major effect on enzyme regulation
(203). Protein kinase C phosphorylates Ser25 as
well as Ser30 (202). Because protein kinases A
and C phosphorylate Ser30, phosphorylation of
choline kinase by one protein kinase reduces
phosphorylation of the enzyme at the same site
by the other protein kinase (202). Phosphory-
lation of choline kinase at Ser25 by protein ki-
nase C does not affect phosphorylation by pro-
tein kinase A (202). Analysis of cki1 eki1 cells
expressing S25A and S30A mutant forms of
choline kinase indicates that the phosphoryla-
tions at Ser25 and Ser30 by protein kinases A and
C stimulate activity (∼twofold) and that these
phosphorylations cause the concomitant in-
crease in PC synthesis via the Kennedy pathway
(202, 203).

Phosphatidate Phosphatase
Phosphorylation

The PAH1-encoded PA phosphatase catalyzes
the dephosphorylation of PA to yield DAG and
Pi (24, 204). This reaction is specific for PA,
with a cofactor requirement of Mg2+ ions, and
is based on a catalytic motif within a haloacid
dehalogenase–like domain of the enzyme
(Figure 4) (16, 24, 118). PA phosphatase ac-
tivity is associated with the cytosolic and mem-
brane fractions of the cell, and its membrane
association is peripheral in nature (24). The
regulation of PA phosphatase activity governs
the synthesis of TAG, the pathways by which
phospholipids are synthesized, PA signaling
and transcriptional regulation of UASINO-
containing genes, and the growth of the
nuclear/ER membrane (205).

PA phosphatase is phosphorylated at mul-
tiple sites in vivo (119). Mass spectrometry
analysis of purified PA phosphatase, in com-
bination with immunoblot analysis using an
antiphospho Ser/Thr-Pro antibody, has iden-
tified 16 sites of phosphorylation (Figure 4);
seven of these sites are located within the
minimal Ser/Thr-Pro motif that is a target
for cell cycle–regulated protein kinases (e.g.,

Cdc28p and Pho85p) (119). Proteome-wide
in vitro phosphorylation analyses have shown
that the enzyme is a target for protein kinases,
including those encoded by CDC28 (CDK1)
(206), PHO85 (207, 208), and DBF2 (209).
That PA phosphatase is a target for Cdc28p in
vivo is supported by the observations that the
electrophoretic mobility of PA phosphatase
increases in a temperature-sensitive cdc28-4
mutant defective in cyclin-dependent kinase
activity and in a cyclin clb3 clb4 mutant, whereas
PA phosphatase electrophoretic mobility de-
creases when cells enter the mitotic phase of
growth (108). Moreover, the slower-migrating
PA phosphatase protein is recognized by the
antiphospho Ser/Thr-Pro antibody that is spe-
cific for cell cycle–regulated phosphoepitopes
having the minimal Ser/Thr-Pro motif (108,
210), and the seven sites of phosphorylation
identified in PA phosphatase have this motif
(119).

Phosphorylation of PA phosphatase has an
inhibitory effect on the enzyme function in
vivo. The Nem1p-Spo7p phosphatase com-
plex is responsible for the dephosphorylation
of PA phosphatase, and yeast lacking the phos-
phatase complex exhibits the phenotypes char-
acteristic of the pah1 mutant (e.g., derepression
of phospholipid synthesis genes and aberrant
nuclear/ER membrane expansion) defective in
PA phosphatase activity (108). In contrast to
phosphorylation, the dephosphorylation of PA
phosphatase has a stimulatory effect on en-
zyme function in vivo. Yeast overexpressing
PA phosphatase with simultaneous mutations
of the seven sites within the Ser/Thr-Pro mo-
tif to nonphosphorylatable Ala residues exhibits
inositol auxotrophy by exacerbating the Opi1p-
mediated repression of INO1 expression (pre-
sumably owing to reduced PA content) (119).
In addition, the phosphorylation-deficient sep-
tuple mutant PA phosphatase exhibits elevated
(1.8-fold) activity in vitro (119).

Genetic and biochemical data indicate that
the association of PA phosphatase with the
membrane, where its substrate PA resides,
is essential to the enzyme’s function in vivo
(108, 119). The fact that the Nem1p-Spo7p
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complex is associated with the nuclear/ER
membrane (108, 211) indicates that phosphory-
lated PA phosphatase is recruited to the mem-
brane for its dephosphorylation. In vivo and
in vitro studies have shown that the interac-
tion of PA phosphatase with the membrane
is dependent on an amphipathic helix found
at the N-terminal region of the enzyme (212)
and that the interaction through the amphi-
pathic helix is dependent on dephosphorylation
by the Nem1p-Spo7p phosphatase complex
(212).

CONCLUSIONS

The regulation of phospholipid synthesis in
S. cerevisiae is a complex coordinated process
that is governed by genetic and biochemical
mechanisms, which are interrelated. Gene ex-
pression in S. cerevisiae is largely controlled by
transcriptional regulation that is triggered by
PA content through biochemical modulation of
phospholipid synthesis enzymes. The phospho-
lipid precursors, products, and metabolites, as
well as phosphorylation, play important roles in
this regulation.

SUMMARY POINTS

1. Phospholipid synthesis genes containing a UASINO element are transcriptionally acti-
vated by the Ino2p-Ino4p heterodimer, which is repressed by Opi1p.

2. The nuclear localization and repressor function of Opi1p is regulated by its interaction
with Scs2p and PA at the nuclear/ER membrane.

3. PA is a phospholipid precursor and also plays a major role as a signaling molecule in the
regulation of phospholipid synthesis gene expression.

4. PA phosphatase and DAG kinase play major roles in regulating PA levels.

5. Genetic and biochemical mechanisms are interrelated to control membrane phospholipid
synthesis.

6. Phosphorylation regulates, either positively or negatively, the function of Opi1p and the
activity and localization of key phospholipid synthesis enzymes.

FUTURE ISSUES

1. Structures of phospholipid synthesis enzymes and regulatory proteins need to be solved
to elucidate the molecular mechanisms of catalytic function, membrane association, and
gene expression.

2. Phosphorylation regulates the functions of Opi1p and phospholipid synthesis enzymes.
The molecular mechanisms for these regulations need further examination. Infor-
mation on the physiological conditions that stimulate and repress phosphorylation/
dephosphorylation by specific protein kinases and phosphatases is needed.

3. Data from the global analyses of gene and protein expressions, protein modifications,
and metabolites (e.g., lipidomics) need to be evaluated and integrated for designing novel
research approaches to better understand the regulation of phospholipid synthesis and
its relationship with other metabolic pathways.

www.annualreviews.org • Regulation of Phospholipid Synthesis 873

A
nn

u.
 R

ev
. B

io
ch

em
. 2

01
1.

80
:8

59
-8

83
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 R

ut
ge

rs
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
 o

n 
06

/1
6/

11
. F

or
 p

er
so

na
l u

se
 o

nl
y.



BI80CH34-Carman ARI 16 May 2011 14:8

4. Some reactions in phospholipid synthesis are catalyzed by more than one enzyme (e.g.,
glycerol-3-phosphate and lysoPA acyltransferases, PS decarboxylase, CTP synthetase,
and PA phosphatase). In the case of PS decarboxylase, enzyme activity is required for
functions in different cellular compartments. For enzymes (e.g., acyltransferases and
CTP synthetase) localized in the same cellular compartment, the reason for redundancy
is not obvious and needs to be addressed.

5. Some enzymes participate in multiple biosynthetic pathways. For example, the product
(DAG) of the PA phosphatase reaction is used for the synthesis of phospholipids and
TAG, whereas the product (CTP) of the CTP synthetase reaction is used for the synthesis
of phospholipids and nucleic acids. The mechanisms that control the utilization of the
products for different metabolic processes warrant further investigations.
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An online log of corrections to Annual Review of Biochemistry articles may be found at
http://biochem.annualreviews.org/errata.shtml
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