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ABSTRACT Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model
system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g.,
phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and
membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have
revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in
addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth
stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex
and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic
genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates
transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its
translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the
expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of
catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphoryla-
tion, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates
coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways.
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THE yeast, Saccharomyces cerevisiae, has emerged as
a powerful model system for the elucidation of the me-

tabolism, cell biology, and regulation of eukaryotic lipids.
Due to the strong homology of yeast proteins, pathways,
and regulatory networks with those in higher eukaryotes,
yeast has provided numerous insights into the genetics
and biochemistry of lipid-related diseases. As a system for
the study of eukaryotic lipid metabolism, the advantages of
yeast include its vast, well-curated, and electronically acces-
sible archives of genetic data, including those detailing
gene–enzyme relationships in the pathways for lipid synthe-
sis and turnover. Another major advantage is the rapidly
increasing understanding of the regulation and localization
of enzymes and the movement of lipids within and among
cellular membranes and compartments in yeast.
This article presents an overview of progress in elucidating
gene–enzyme relationships, cellular localization, and regu-
latory mechanisms governing glycerolipid metabolism in
yeast. The metabolism covered in this YeastBook chapter
includes the regulation, synthesis, and turnover of phospho-
lipids and triacylglycerol (TAG) and their precursors in the
context of changing growth conditions and nutrient avail-
ability. All glycerophospholipids in yeast, including the
major phospholipids, phosphatidylinositol (PI), phosphati-
dylserine (PS), phosphatidylethanolamine (PE), and phos-
phatidylcholine (PC), are derived from the precursor lipid,
phosphatidic acid (PA) (Figures 1 and 2). A major topic of
this review article is the tremendous recent progress in elu-
cidating the complex regulatory mechanisms that control
the connected and coordinated pathways involved in the
synthesis of glycerophospholipids and TAG, which is also
derived from PA (Figures 2, 3, and 4). The regulation of
glycerolipid metabolism occurs at many levels and is a major
topic discussed in this article. Adding complexity to analysis
of the regulatory networks connected to lipid metabolism is
the fact that critical signals controlling this regulation arise
during the ongoing biosynthesis and turnover of the lipids

themselves and involve precursors and metabolites embed-
ded in the metabolism.

For example, PA plays a number of signaling roles vital to
the regulation of lipid metabolism in yeast (Figure 3), in
addition to its function as precursor to all phospholipids
and TAG (Figure 2). PI synthesis is regulated in response
to its precursor, inositol, on several levels (Figures 3 and 4)
and PI also serves as precursor to both phosphatidylinositol-
phosphates and inositol-containing sphingolipids, both of
which are implicated in a wide range of signaling and reg-
ulatory activities (Strahl and Thorner 2007; Dickson 2008,
2010), topics that will not be dealt with in detail in this
YeastBook chapter. In addition, the enzymes controlling
the metabolism of gycerolipids are localized to specific cel-
lular compartments (Figure 2; Tables 1–3), while the lipids
themselves are, for the most part, distributed to a much
wider range of cellular compartments. Moreover, the regu-
lation of TAG metabolism plays a major role in lipid droplet
(LD) formation and depletion (Murphy and Vance 1999;
Rajakumari et al. 2008; Kurat et al. 2009; Kohlwein
2010a), a topic that will also be addressed in detail in the
chapter on Lipid Droplets and Peroxisomes. Thus, detailed
knowledge of pathways, gene–enzyme relationships, and
subcellular localization of enzymes and pools of lipids and
metabolites involved in the synthesis and turnover of glyc-
erolipids (Figures 2–4, Tables 1–3) is essential to the eluci-
dation of the complex mechanisms responsible for their
regulation.

Notably, in eukaryotes phospholipids play many vital
roles in the biology of the cell that extend beyond lipid
metabolism itself. These include roles in membrane traffick-
ing and membrane identity (Vicinanza et al. 2008) and an-
choring of membrane proteins (Roth et al. 2006; Pittet and
Conzelmann 2007; Fujita and Jigami 2008), complex topics
in their own right, which will be discussed only in brief in
this YeastBook chapter. Phospholipids also serve as signaling
molecules and as precursors of signaling molecules (Strahl
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and Thorner 2007). Thus, the advancements in yeast glyc-
erolipid metabolism discussed in this review article also
have enormous potential to contribute critical insights into
these vital roles of lipids and lipid-mediated signaling in
eukaryotic cells.

Pathways of glycerolipid metabolism

Major glycerolipids of S. cerevisiae include the phospholipids
PC, PE, PI, PS (Figure 1), phosphatidylglycerol (PG), and car-
diolipin (CL) (Rattray et al. 1975; Henry 1982; Carman and
Henry 1989; Paltauf et al. 1992; Guan and Wenk 2006; Ejsing
et al. 2009). Minor phospholipids include intermediates such
as PA, CDP-diacylglycerol (CDP-DAG), phosphatidylmonome-
thylethanolamine (PMME), phosphatidyldimethylethanol-
amine (PDME), the D-3, D-4, and D-5 polyphosphoinositides,
and lysophospholipids (Rattray et al. 1975; Oshiro et al. 2003;
Strahl and Thorner 2007). TAG and diacylglycerol (DAG) are
the major neutral glycerolipids. The fatty acids that are com-
monly esterified to the glycerophosphate backbone of yeast
glycerolipids include palmitic acid (C16:0), palmitoleic acid
(C16:1), stearic acid (C18:0), and oleic acid (C18:1) (Rattray

et al. 1975; Henry 1982; Bossie and Martin 1989; McDonough
et al. 1992; Martin et al. 2007). The pathways for the synthesis
of phospholipids and TAG are shown in Figure 2. The enzymes
and transporters of glycerolipid metabolism and the genes that
encode them are listed in Tables 1–3. The gene–protein rela-
tionships shown in the tables have been confirmed by the
analysis of gene mutations and/or by the biochemical charac-
terization of the enzymes and transporters (Carman and Henry
1989; Greenberg and Lopes 1996; Henry and Patton-Vogt
1998; Carman and Henry 1999; Black and Dirusso 2007;
Tehlivets et al. 2007; Kohlwein 2010b; Carman and Han
2011).

Synthesis and turnover of phospholipids

In the de novo pathways (Figure 2, Table 1), all membrane
phospholipids are synthesized from PA, which is derived
from glycerol-3-P via lysoPA by two fatty acyl CoA-depen-
dent reactions that are catalyzed in the endoplasmic reticu-
lum (ER) by the SCT1- and GPT2-encoded glycerol-3-P
acyltransferases and the SLC1- and ALE1-encoded lysoPA/
lysophospholipid acyltransferases, respectively (Athenstaedt
and Daum 1997; Athenstaedt et al. 1999b; Zheng and Zou
2001; Benghezal et al. 2007; Chen et al. 2007b; Jain et al.
2007; Riekhof et al. 2007b). The glycerol-3-P acyltransferase
enzymes also utilize dihydroxyacetone-P as a substrate, and
the product acyl dihydroxyacetone-P is converted to lysoPA
by the lipid droplet (LD) and ER-associated AYR1-encoded
reductase (Athenstaedt and Daum 2000). At this point in the
pathway, PA is partitioned to CDP-DAG, catalyzed by CDS1-
encoded CDP-DAG synthase (Carter and Kennedy 1966;
Kelley and Carman 1987; Shen et al. 1996) or to DAG,
catalyzed by PAH1-encoded PA phosphatase (Han et al.
2006) (Figure 1). CDP-DAG synthase activity has been
detected in the ER and in mitochondria (Kuchler et al.
1986), whereas PA phosphatase is a cytosolic enzyme that
must associate with membranes to catalyze the dephosphor-
ylation of PA to produce DAG (Han et al. 2006; Carman and
Han 2009a). CDP-DAG and DAG are used to synthesize PE
and PC by two alternative routes, namely, the CDP-DAG and
Kennedy pathways (Figure 2). In the CDP-DAG pathway,
CDP-DAG is converted to PS by the ER localized CHO1-
encoded PS synthase (Atkinson et al. 1980; Letts et al.
1983; Bae-Lee and Carman 1984; Kiyono et al. 1987; Nikawa
et al. 1987b). Yeast has two PS decarboxylases encoded, by
the PSD1 and PSD2 genes. Psd1, localized to the inner mito-
chondrial membrane, accounts for the majority of the enzy-
matic activity in yeast, while the minor activity, Psd2,
associates with Golgi/vacuole (Clancey et al. 1993; Trotter
et al. 1993, 1995; Voelker 2003). PE then undergoes three se-
quential methylation reactions in the ER (Gaynor and Carman
1990), the first of which is catalyzed by the CHO2-encoded
PE methyltransferase, while the final two methylations are
catalyzed by the OPI3-encoded phospholipid methyltransfer-
ase (Kodaki and Yamashita 1987; Summers et al. 1988;
Kodaki and Yamashita 1989; McGraw and Henry 1989).
The CDP-DAG pathway is the major route for synthesis of

Figure 1 Phospholipid structures. The diagram shows the structures of
the phospholipid PA and the major phospholipids PI, PS, PE, and PC that
are derived from PA. The hydrophilic head groups (H, inositol, serine,
ethanolamine, and choline) that are attached to the basic phospholipid
structure are shown in red. The four most abundant fatty acids esterified
to the glycerol-3-phosphate backbone of the phospholipids are palmitic
acid, palmitoleic acid, steric acid, and oleic acid. The type and position of
the fatty acyl moieties in the phospholipids are arbitrarily drawn. The
relative amounts of the phospholipids as well as their fatty acyl compo-
sitions vary depending on strain (e.g., mutation) and growth condition.
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PE and PC when wild-type cells are grown in the absence
of ethanolamine and choline, and cho1, psd1 psd2, and
cho2 opi3 mutants defective in this pathway have choline/
ethanolamine auxotrophy phenotypes (Atkinson et al. 1980a
Summers et al. 1988; McGraw and Henry 1989; Trotter and
Voelker 1995; Trotter et al. 1995). PE and PC synthesis in
mutants defective in the CDP-DAG pathway can also be
supported by exogenously supplied lysoPE, lysoPC, or PC
with short acyl chains, which are transported into the cell.
LysoPE and lysoPC are acylated by the ALE1-encoded lyso-
phospholipid acyltransferase (Jain et al. 2007; Tamaki et al.
2007; Riekhof et al. 2007a,b). Short chain PE and PC are

remodeled with C16 and C18 acyl chains prior to incorpo-
ration into the membrane (Tanaka et al. 2008; Deng et al.
2010).

In the Kennedy pathway (Hjelmstad and Bell 1990), PE
and PC are synthesized, respectively, from ethanolamine and
choline (Figure 2, Table1). Exogenous ethanolamine and cho-
line are both transported into the cell by the HNM1-encoded
choline/ethanolamine transporter (Nikawa et al. 1986). The
EKI1-encoded ethanolamine kinase (Kim et al. 1999) and the
CKI1-encoded choline kinase (Hosaka et al. 1989) are both
cytosolic enzymes, which, respectively, phosphorylate etha-
nolamine and choline with ATP to form ethanolamine-P and

Figure 2 Pathways for the synthesis of glycerolipids and their subcellular localization. Phospholipids and TAG share DAG and PA as common precursors.
In the de novo synthesis of phospholipids, PA serves as the immediate precursor of CDP-DAG, precursor to PI, PG, and PS. PS is decarboxylated to form
PE, which undergoes three sequential methylations resulting in PC. PA also serves as a precursor for PGP, PG, and ultimately CL, which undergoes acyl-
chain remodeling to the mature lipid. Alternatively, PA is dephosphorylated, producing DAG, which serves as the precursor of PE and PC in the Kennedy
pathway. DAG also serves as the precursor for TAG and can be phosphorylated, regenerating PA. The names of the enzymes that are discussed in detail
in this YeastBook chapter are shown adjacent to the arrows of the metabolic conversions in which they are involved and the gene–enzyme relationships
are shown in Tables 1–3. Lipids and intermediates are boxed, with the most abundant lipid classes boxed in boldface type. Enzyme names are indicated
in boldface type. The abbreviations used are: TAG, triacylglycerols; PI, phosphatidylinositol; PA, phosphatidic acid; CDP-DAG, CDP-diacylglycerol; DAG,
diacylglycerol; MAG, monoacylglycerol; Gro, glycerol; DHAP, dihydroxyacetone phosphate, PS, phosphatidylserine; PE, phosphatidylethanolamine; PG,
phosphatidylglycerol; PGP phosphatidylglycerol phosphate; CL* precursor cardiolipin; MLCL, monolyso-cardiolipin; CL, mature cardiolipin; PMME,
phosphatidylmonomethylethanolamine; PDME, phosphatidyl-dimethylethanolamine; PC, phosphatidylcholine; FFA, free fatty acids; Cho, choline, Etn,
ethanolamine, Ins, inositol; Cho-P, choline phosphate; CDP-Cho, CDP-choline; Etn-P, ethanolamine phosphate; CDP-Etn, CDP-ethanolamine; PI 3-P,
phosphatidylinositol 3-phosphate; PI 4-P, phosphatidylinositol 4-phosphate; PI 4,5-P2, phosphatidylinositol 4,5-bisphosphate; PI 3,5-P2, phosphatidyl-
inositol 3,5-bisphosphate. Nucl, nucleus; ER, endoplasmic reticulum; Mito, mitochondria; LD, lipid droplets; G/E/V, Golgi, endosomes, vacuole; Pex,
peroxisomes; Cyt, cytoplasma; PM, plasma membrane. CL* indicates a precursor of cardiolipin (CL) with saturated acyl-chain that undergoes deacy-
lation/reacylation to mature CL. See text for details.
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choline-P. Ethanolamine-P may also be derived from sphingo-
lipids by dihydrosphingosine-1-P lyase, encoded by the DPL1
gene (Saba et al. 1997; Schuiki et al. 2010). These intermedi-
ates are then activated with CTP to form CDP-ethanolamine
and CDP-choline, respectively, by the ECT1-encoded ethanol-
amine-P cytidylyltransferase (Min-Seok et al. 1996) and the
PCT1-encoded choline-P cytidylyltransferase (Tsukagoshi
et al. 1987), which are associated with the nuclear/ER mem-
brane (Huh et al. 2003; Natter et al. 2005). Finally, the EPT1-
encoded ethanolamine phosphotransferase (Hjelmstad and
Bell 1988, 1991) and the CPT1-encoded choline phospho-
transferase (Hjelmstad and Bell 1987, 1990), respectively,
catalyze the reactions of CDP-ethanolamine and CDP-choline
with DAG provided by the PAH1-encoded PA phosphatase to
form PE and PC. Ept1 will also catalyze the CDP-choline–de-
pendent reaction (Hjelmstad and Bell 1988). Cpt1 and Ept1
have somewhat ambiguous patterns of localization to vesicu-

lar structures, but have also been described to localize to
mitochondria or ER (Huh et al. 2003; Natter et al. 2005).

The CDP-DAG and Kennedy pathways are both used by
wild-type cells, regardless of whether or not ethanolamine
and choline are present in the growth medium (Patton-Vogt
et al. 1997; Henry and Patton-Vogt 1998; Kim et al. 1999).
In the absence of exogenous choline, this Kennedy pathway
precursor may be derived from hydrolysis of PC synthesized
by the CDP-DAG pathway and subsequently hydrolyzed by
phospholipase D (Patton-Vogt et al. 1997; Xie et al. 1998)
encoded by the SPO14 gene (Rose et al. 1995; Waksman
et al. 1996). Choline for PC synthesis can also be derived
from Nte1-catalyzed deacylation (Zaccheo et al. 2004) fol-
lowed by hydrolysis by Gde1 to produce choline and glyc-
erophosphate (Fernandez-Murray and McMaster 2005a;
Fisher et al. 2005; Patton-Vogt 2007). The activity of
a Ca++-dependent phospholipase D with preference for PS

Figure 3 Model for PA-mediated regulation of phospho-
lipid synthesis genes. (A) Growth conditions (e.g., expo-
nential phase, inositol depletion, or zinc supplementation)
under which the levels of PA are relatively high, the Opi1
repressor is tethered to the nuclear/ER membrane, and
UASINO-containing genes are maximally expressed (bold-
face arrow) by the Ino2-Ino4 activator complex. (Inset)
Localization of Opi1, fused with GFP at its C-terminal
end and integrated into the chromosome, being expressed
under its own promoter in live cells growing logarithmi-
cally in synthetic complete medium lacking inositol (2Ins)
and analyzed by fluorescence microscopy. (B) Growth con-
ditions (e.g., stationary phase, inositol supplementation, or
zinc depletion) under which the levels of PA are reduced,
Opi1 dissociates from the nuclear/ER membrane, and
enters into the nucleus where it binds to Ino2 and attenu-
ates (thin arrow) transcriptional activation by the Ino2–
Ino4 complex. (Inset) Localization of Opi1, as described
in A, except that the cells are growing logarithmically in
medium containing 75 mM inositol. PA level decreases by
the stimulation of PI synthesis in response to inositol (Ins)
supplementation and by Zap1-mediated induction of PIS1,
that results in an increase in PI synthesis in response to zinc
depletion. The regulation in response to zinc depletion and
stationary phase occurs without inositol supplementation.
Pah1 and Dgk1 play important roles in controlling PA con-
tent and transcriptional regulation of UASINO-containing
genes. The synthesis of TAG (which is stored in lipid drop-
lets, LD) and phospholipids (with the exception of PE,
which occurs in the mitochondria and Golgi) occurs in
the ER. Fluorescence microscopy images of Opi1 localiza-
tion courtesy of Yu-Fang Chang, Henry Laboratory, De-
partment of Molecular Biology and Genetics, Cornell
University, Ithaca, NY.
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and PE has been detected (Mayr et al. 1996), but the corre-
sponding gene encoding a PE-specific phospholipase D has
yet to be identified. Thus, proof that ethanolamine derived
from PE is recycled for PE synthesis via the Kennedy path-
way is still lacking. Kennedy pathway mutants (e.g., cki1
eki1 and cpt1 ept1) defective in both the CDP-choline and
CDP-ethanolamine branches can synthesize PC only by the
CDP-DAG pathway (McMaster and Bell 1994; Morash et al.
1994; Kim et al. 1999). However, unlike the CDP-DAG path-
way mutants, the Kennedy pathway mutants do not exhibit
any auxotrophic requirements and have an essentially nor-
mal complement of phospholipids (Morash et al. 1994; Kim
et al. 1999).

In the synthesis of the inositol-containing phospholipids
(Figure 2, Table 1), CDP-DAG donates its phosphatidyl
moiety to inositol to form PI (Paulus and Kennedy 1960;
Fischl and Carman 1983) in a reaction that competes in
the ER with PS synthase for their common substrate, CDP-
DAG (Kelley et al. 1988). While PIS1-encoded PI synthase is
essential, a strain expressing a mutant form of Pis1 with
a lower affinity for inositol has been isolated as an inositol
auxotroph (Nikawa and Yamashita 1984; Nikawa et al.
1987a). The inositol used in PI synthesis is either synthe-
sized de novo (discussed below) or obtained from the

growth medium via the ITR1- and ITR2-encoded inositol
transporters (Table 2) (Nikawa et al. 1991). Once formed,
PI may be converted to PI 3-P by the VPS34-encoded PI 3
kinase (Herman and Emr 1990; Schu et al. 1993) or to PI
4-P by the PI 4 kinases encoded by LSB6 (Han G-S et al.
2002; Shelton et al. 2003), STT4 (Yoshida et al. 1994a), and
PIK1 (Flanagan et al. 1993; Garcia-Bustos et al. 1994). PI 4-P
may be further phosphorylated to PI 4,5-P2 by the MSS4-
encoded PI 4-P 5 kinase (Yoshida et al. 1994b), whereas
PI 3-P may be phosphorylated to PI 3,5-P2 by the FAB1-
encoded PI 3-P 5 kinase (Yamamoto et al. 1995). The specific
localization of these kinases and the lipids they produce play
important roles in signaling, membrane identity, and mem-
brane trafficking (Strahl and Thorner 2007). PI also serves as
a precursor in the synthesis of the complex sphingolipids in
yeast, which also play essential roles in signaling and mem-
brane function (Dickson and Lester 2002; Dickson 2008),
topics that are beyond the scope of this YeastBook chapter.

In the synthesis of mitochondrial-specific phospholipids
(Figure 2, Table1), CDP-DAG donates its phosphatidyl moi-
ety to glycerol-3-P to form phosphatidylglycerophosphate
(PGP) in the reaction catalyzed by the PGS1-encoded PGP
synthase (Janitor and Subik 1993; Chang et al. 1998a). PGP
is then dephosphorylated to PG by the GEP4-encoded
PGP phosphatase (Osman et al. 2010). The CRD1-encoded
CL synthase (Jiang et al. 1997; Chang et al. 1998b; Tuller
et al. 1998) catalyzes the reaction between PG and another
molecule of CDP-DAG to generate CL. The CLD1-encoded
cardiolipin-specific phospholipase and the TAZ1-encoded
monolyso cardiolipin acyltransferase, involved in establish-
ing specific unsaturated cardiolipin species, are also specif-
ically associated with the mitochondria (Beranek et al. 2009;
Brandner et al. 2005).

The enzymes that catalyze the turnover of phospholipids
include both phospholipases and lipid phosphatases (Table
3). NTE1-encoded phospholipase B (Zaccheo et al. 2004;
Fernandez-Murray and McMaster 2005b, 2007) is an inte-
gral ER membrane protein and removes both fatty acids
from PC to produce glycerophosphocholine (GroPCho).
GroPCho may be re-acylated by an uncharacterized acyl-
transferase to PC (Ståhlberg et al. 2008). The phospholipase
B enzymes encoded by PLB1, PLB2, and PLB3 catalyze the
same type of reaction, but they are not specific and their
localization is ambiguous. Plb1 localizes to the ER, vesicles,
the plasma membrane, and the extracellular space and pri-
marily utilizes PC and PE as substrates, whereas Plb3 is
found in vesicles, vacuoles, as well as the cytosol and pri-
marily uses PI as a substrate (Lee et al. 1994; Fyrst et al.
1999; Merkel et al. 1999, 2005). The GroPCho and glycer-
ophosphoinositol (GroPIns) produced by the phospholipase
B enzymes may be excreted into the growth medium and
then transported back into the cell by the GIT1-encoded
GroPCho/GroPIns transporter localized in the plasma mem-
brane (Patton-Vogt and Henry 1998; Fisher et al. 2005). In
turn, these molecules are hydrolyzed by a phosphodiesterase
to produce the phospholipid precursor molecules choline

Figure 4 Regulation of phospholipid synthesis by soluble lipid precursors
and metabolites. The diagram shows the major steps in the synthesis of
phospholipids. The enzymes that are biochemically regulated by phos-
pholipid precursors and products are shown. The green arrow designates
the stimulation of enzyme activity, whereas the red line designates the
inhibition of enzyme activity. Details on the biochemical regulation of
these enzymes are discussed in the section Water soluble precursors of
phospholipids, metabolism, and regulatory roles and in Carman and Han
(2009a). See Figure 2 for abbreviations.
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Table 1 Glycerolipid synthesis enzymes

Gene
Ino2 or Opi2

phenotype Enzyme
Mol mass
(kDa)

Isoelectric
point

Molecules
per cellb Locationc

Transmembrane
domains

Phosphorylation
sitesd

SCT1 (GAT2) Ino2 Glycerol-3-P
/dihydroxyacetone-P
acyltransferase

85.7 7.27 1050 ER 4 Few

GPT2 (GAT1) — Glycerol-3-P
/dihydroxyacetone-P
acyltransferase

83.6 10.3 3100 ER, lipid
droplets

4 Several

AYR1 — Acyl DHAP reductase 32.8 9.92 3670 ER, lipid
droplets

None None

SLC1 — LysoPA/Acylglycerol-3-P
acyltransferase

33.8 10.41 ND ER, lipid
droplets

1 None

ALE1 (SLC4,
LPT1, LCA1)

— LysoPA/Acylglycerol-3-P
acyltransferase

72.2 10.3 ND ER 7 Several

PSI1 (CST26) — LysoPI acyltransferase 45.5 10.15 2010 ER 4 None
TAZ1 — LysoPC acyltransferase/

monolysoCL
acyltransferase

44.2 9.38 1340 Mitochondria None None

CDS1 (CDG1)a Opi2 CDP-DAG synthase 51.8 8.64 ND ER, mitochondria 6 Few
CHO1 (PSS1)a Opi2 PS synthase 30.8 6.23 ND ER 2 Several
PSD1a Opi2 PS decarboxylase 56.6 9.84 1080 Mitochondria None None
PSD2 — PS decarboxylase 130 7.85 ND Vacuole,

endomembranes
None Few

CHO2 (PEM1)a Opi2 PE methyltransferase 101.2 8.56 1810 ER 8 Few
OPI3 (PEM2)a Opi2 Phospholipid

methyltransferase
23.1 9.6 5890 ER, mitochondria None None

PAH1 (SMP2) — PA phosphatase 95 4.68 3910 Cytoplasm, ER None Several
DGK1 (HSD1) — DAG kinase 32.8 9.48 784 ER 4 Few
EKI1a — Ethanolamine kinase 61.6 5.69 3420 Cytoplasm None Few
ECT1 (MUQ1) — Ethanolamine-P

cytidylyltransferase
36.8 6.44 4700 Cytoplasm None None

EPT1a — Ethanolamine/choline
phosphotransferase

44.5 6.5 ND ER 7 None

CKI1a — Choline kinase 66.3 5.43 3930 Cytoplasm None Several
PCT1 (CCT1,

BSR2)a
Opi2 Choline-P

cytidylyltransferase
49.4 9.26 3050 Cytoplasm,

nucleus
None Several

CPT1a — Choline
phosphotransferase

44.8 6.57 981 Membrane 8 None

PGS1 (PEL1) — PGP synthase 59.3 10.5 ND Mitochondria None None
GEP4 — PGP phosphatase 20.9 9.18 ND Mitochondria None None
CRD1 (CLS1) — CL synthase 32 10.55 876 Mitochondria 3 None
PIS1 Ino2 PI synthase 24.8 8.92 3810 ER 3 None
LSB6 — PI 4-kinase 70.2 6.68 57 Plasma

membrane,
vacuole
membrane

None None

STT4 Ino2 PI 4-kinase 214.6 7.44 846 Plasma
membrane

None Few

PIK1 — PI 4-kinase 119.9 6.46 1600 Plasma
membrane,
nucleus, Golgi

None Several

VPS34 (END12,
PEP15, VPL7,
VPT29, STT8,
VPS7)

Opi2 PI 3-kinase 100.9 7.79 1080 Vacuole None None

MSS4 Ino2 PI 4-P 5-kinase 89.3 10.13 ND Cytoplasm None Several
FAB1 (SVL7) Ino2 PI 3-P 5-kinase 257.4 8.45 149 Vacuole None Several
DGA1a — Acyl-CoA

diacylglycerol
acyltransferase

47.7 10.39 907 ER, lipid
droplets

1 Few

LRO1a — Phospholipid
diacylglycerol
acyltransferase

75.3 6.67 ND ER 1 Few

ARE1 (SAT2)a — Acyl-CoA sterol
acyltransferase

71.6 8.27 ND ER 9 Several

(continued)
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and inositol, respectively (Patton-Vogt 2007). PLC1-encoded
phospholipase C is cytosolic and specific for PI 4,5-P2 and
produces DAG and inositol 1,4,5-trisphosphate (Flick and
Thorner 1993; Yoko-O et al. 1993), and the PGC1-encoded
phospholipase C localizes to lipid droplets and mitochondria
and is specific for PG and produces DAG and glycerol 3-P
(Simockova et al. 2008). The SPO14-encoded cytosolic phos-
pholipase D is specific for PC and produces PA and choline
(Rose et al. 1995; Waksman et al. 1996). Most phospholipids
undergo rapid turnover and acyl-chain remodeling, which
yields the typical complex pattern of lipid molecular species
found in yeast (Schneiter et al. 1999; Guan and Wenk 2006;
Ejsing et al. 2009). This remodeling is governed by specific
acyltransferases, such as the PSI1-encoded acyltransferase
in the ER that is involved in stearoyl-acylation of PI (Le
Guedard et al. 2009), or the CLD1-encoded cardiolipin-
specific phospholipase A in mitochondria (Beranek et al.
2009) and the TAZ1-encoded acyltransferase (yeast tafazzin
ortholog; Gu et al. 2004; Testet et al. 2005). Moreover, sev-
eral enzymes of TAG synthesis and degradation have addi-
tional activities, suggesting that they also may play a role
in phospholipid acyl-chain remodeling (Rajakumari et al.
2008; Kohlwein 2010b; Rajakumari and Daum 2010a,b).

There are several phosphatase enzymes that catalyze the
dephosphorylation of the polyphosphoinositides. Some of
these enzymes are specific and some have broad substrate
specificity. The YMR1-encoded (Taylor et al. 2000) and
FIG4-encoded (Gary et al. 2002) phosphatases are specific
for PI 3-P and PI 3,5-P2, respectively, whereas INP51-
encoded (Stolz et al. 1998b) and INP54-encoded (Wiradjaja
et al. 2001) phosphatases are specific for PI 4,5-P2. The
phosphatase encoded by SAC1 will utilize PI 3-P, PI 4-P,
and PI 3,5-P2 (Guo et al. 1999), whereas the phosphatases
encoded by INP52 and INP53 will utilize any polyphosphoi-
nositide as a substrate (Stolz et al. 1998; Guo et al. 1999).

The DPP1- and LPP1-encoded lipid phosphate phospha-
tase enzymes dephosphorylate a broad spectrum of sub-
strates that include DAG pyrophosphate (DGPP), PA,
lysoPA, sphingoid-base phosphates, and isoprenoid phos-

phates (Toke et al. 1998, 1999; Faulkner et al. 1999). While
these enzymes may utilize PA as a substrate, they are not
involved in the de novo synthesis of phospholipids and TAG;
the function of which is ascribed to the PAH1-encoded PA
phosphatase (Han et al. 2006; Carman and Han 2009a). The
PHM8 gene encodes a lipid phosphatase that is specific for
lysoPA and yields monoacylglycerol (MAG) and Pi (Reddy
et al. 2008). N-acyl PE is a minor phospholipid species im-
plicated in signaling processes (Merkel et al. 2005) and is
degraded by the FMP30-encoded phospholipase D to N-acyl-
ethanolamide (NAE), which is related to endocannabinoids
(Muccioli et al. 2009). NAE may be catabolized by Yju3, the
major MAG lipase in yeast (see below).

Synthesis and turnover of TAG

The pathways for the synthesis of TAG and phospholipids
share the same initial steps (Figure 2; Table 1; Kohlwein
2010b). Indeed, TAG is derived from the phospholipid,
PA. The PAH1-encoded PA phosphatase provides DAG,
which is acylated by the DGA1- and LRO1-encoded acyl-
CoA–dependent and phospholipid-dependent diacylglycerol
acyltransferases, respectively, to TAG (Oelkers et al. 2000;
Oelkers et al. 2002; Sorger and Daum 2002; Kohlwein
2010b). The ARE1- and ARE2-encoded sterol acyltrans-
ferases utilize acyl-CoA but contribute only marginally to
TAG synthesis from DAG (Yang, H. et al. 1996). Notably,
deletion of both DGA1 and LRO1 genes does not result in
a readily detectable growth phenotype in wild-type cells,
indicating that TAG synthesis is not essential (Oelkers
et al. 2002; Sorger and Daum 2002). Similarly, simultaneous
deletion of the ARE1 and ARE2 genes does not impair cell
growth (Yang et al. 1996). Even the dga1Δ lro1Δ are1Δ
are2Δ quadruple mutant that lacks both TAG and steryl
esters, and has no lipid droplets (LD), exhibits only a slight
extension of the lag phase after recovery from quiescence
(Petschnigg et al. 2009). The dga1Δ lro1Δ are1Δ are2Δ qua-
druple mutant, however, does exhibit a defect in sterol syn-
thesis (Sorger et al. 2004) and is highly sensitive to
unsaturated fatty acid (FA) supplementation (Garbarino

Table 1, continued

Gene
Ino2 or Opi2

phenotype Enzyme
Mol mass
(kDa)

Isoelectric
point

Molecules
per cellb Locationc

Transmembrane
domains

Phosphorylation
sitesd

ARE2 (SAT1)a — Acyl-CoA sterol
acyltransferase

74.0 7.71 279 ER 9 Several

Phospholipid synthesis regulatory proteins
INO2 (DIE1,

SCS1)a
Ino2 Transcriptional

activator
34.2 6.23 784 Nucleus None None

INO4 Ino2 Transcriptional
activator

17.4 10.21 521 Nucleus,
cytoplasm

None None

OPI1 Opi2 Transcriptional
repressor

46 4.87 1280 Nuclear/ER
membrane

None Few

Much of the information in the table may be found in the Saccharomyces Genome Database. Ino2, inositol auxotrophy; Opi2, inositol excretion; ND, not determined.
a Genes containing the UASINO element and regulated by the Ino2-Ino4-Opi1 circuit. The names in parentheses are aliases.
b Ghaemmaghami et al. 2003.
c Habeler et al. 2002; Kumar et al. 2002; Huh et al. 2003; Natter et al. 2005.
d Li, X. et al. 2007; Bodenmiller et al. 2008.
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et al. 2009; Petschnigg et al. 2009). Strikingly, provision of
exogenous unsaturated FA in the absence of TAG synthesis
leads to respiration-dependent cell necrosis (Rockenfeller
et al. 2010), challenging the dogma that lipid-induced cell
death is exclusively apoptotic. The dga1Δ lro1Δ are1Δ are2Δ
quadruple mutant also displays an Ino– phenotype at ele-
vated growth temperature, indicative of altered INO1 ex-
pression and/or defective PI synthesis (Gaspar et al.
2011), ER stress induced by tunicamycin, which inhibits
protein glycosylation and stimulates LD formation in wild-
type cells. However, the dga1Δ lro1Δ are1Δ are2Δ quadruple
mutant is no more sensitive to tunicamycin than wild type,

indicating that LD formation is not protective against this
form of stress (Fei et al. 2009). Dga1 and Lro1 acyltransfer-
ase-dependent TAG synthesis, on the other hand, is required
for growth at semipermissive temperatures in the absence of
inositol in the sec13ts-1 mutant, defective in COPII vesicle
budding from the ER. When shifted to higher growth tem-
perature, the sec13ts mutant channels PA and DAG precur-
sors from phospholipid into TAG, which apparently provides
a degree of protection from the secretory stress caused by
a block in membrane trafficking (Gaspar et al. 2008).

TAG hydrolysis (Figure 2, Table 3) clearly contributes
lipid precursors that are essential to the resumption of

Table 2 Glycerolipid precursor enzymes and transporters

Gene
Ino2 or Opi2

phenotype Enzyme

Mol
mass
(kDa)

Isoelectric
point

Molecules
per cellb Locationc

Transmembrane
domains

Phosphorylation
sitesd

ACC1 (ABP2,
FAS3, MTR7)a

— Acetyl CoA carboxylase 250.4 6.22 20,200 Cytoplasm None Several

HFA1 — Acetyl CoA carboxylase 241.8 8.05 396 Mitochondria None Few
FAS1a — Fatty acid synthase

(b subunit)
228.7 5.79 91,800 Cytoplasm None Several

FAS2a — Fatty acid synthase
(a subunit)

206.9 5.21 17,000 Cytoplasm None Several

ETR1(MRF’) Ino2 2-Enoyl thioester
reductase

42 9.78 1560 Mitochondria None None

HTD2 (RMD12) — 3-Hydroxyacyl-thioester
dehydratase

33 9 799 Mitochondria None None

MCT1 — Malonyl-CoA:ACP
transferase

40.7 6.9 1360 Mitochondria None None

OAR1 — 3-Oxoacyl-ACP reductase 31.2 9.3 1760 Mitochondria None None
ACP1 — Acyl carrier protein 13.9 4.64 60,500 Mitochondria None Few
PPT2 — Phosphopantetheine:

protein transferase
19.9 8.46 486 Mitochondria None None

CEM1 — b-keto-acyl synthase 47.6 8.26 1660 Mitochondria None None
FAA1 — Fatty acyl CoA synthetase 77.8 7.58 7470 ER, lipid droplets None None
FAA2 (FAM1) — Fatty acyl CoA synthetase 83.4 7.7 358 Peroxisomes None None
FAA3 — Fatty acyl CoA synthetase 77.9 9.7 6440 Plasma membrane None None
FAA4 — Fatty acyl CoA synthetase 77.2 6.52 31,200 ER, lipid droplets None None
FAT1 — Fatty acid transporter and

fatty acyl CoA synthetase
77.1 8.47 16,900 ER, lipid droplets 3 None

OLE1 (MDM2) — D9 Fatty acid desaturase 58.4 9.71 ND ER 4 None
ELO1 — FA elongase, condensing

enzyme
36.2 10.2 937 ER 5 None

FEN1 (ELO2) — FA elongase, condensing
enzyme

40.0 10.35 3510 ER 7 Several

SUR4 (ELO3) — FA elongase, condensing
enzyme

39.5 10.13 ND ER 6 None

IFA38 (YBR159w) — b-keto acyl-CoA reductase 38.7 10.28 41900 ER 1 None
PHS1 — 3-Hydroxy acyl-CoA

dehydratase
24.5 10.84 ND ER 6 None

TSC13 — Enoyl-CoA reductase 36.8 10.38 23600 ER 4 None
INO1a (APR1) Ino2 Inositol 3-P synthase 59.6 5.77 ND Cytoplasm None None
INM1 — Inositol 3-P phosphatase 32.8 5 2440 Cytoplasm, nucleus None None
URA7 Ino2 CTP synthetase 64.7 5.93 57,600 Cytoplasm None Several
URA8 — CTP synthetase 63 6.02 5370 Cytoplasm None None
ITR1a Opi2 Inositol transporter 63.5 6.51 ND Plasma membrane 12 Several
ITR2 (HRB612) — Inositol transporter 66.7 8.25 468 Plasma membrane 12 None
HNM1 (CTR1)a — Choline transporter 62 6.83 ND Plasma membrane 12 Few
GIT1 — GroPIns/GroPCho

transporter
57.3 8.64 ND Plasma membrane 11 None

Much of the information in the table may be found in the Saccharomyces Genome Database. Ino2, inositol auxotrophy; Opi2, inositol excretion; ND, not determined.
a Genes containing the UASINO element and are regulated by the Ino2-Ino4-Opi1 circuit, The names in parentheses are aliases.
b Ghaemmaghami et al. 2003.
c Habeler et al. 2002; Kumar et al. 2002; Huh et al. 2003; Natter et al. 2005.
d Li et al. 2007; Bodenmiller et al. 2008.
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growth upon exit from stationary phase (Kurat et al. 2009;
Kohlwein 2010b). TAG degradation provides substrates for
the synthesis of phospholipids and sphingolipids (Rajakumari
et al. 2010), which are required for efficient cell cycle
progression upon exit from quiescence (Kurat et al. 2009).
Degradation of TAG is catalyzed by TGL1-, TGL3-, TGL4-,

and TGL5-encoded TAG lipases, all of which are localized
to LD (Athenstaedt and Daum 2003, 2005; Jandrositz et al.
2005; Kurat et al. 2006; Rajakumari et al. 2008; Kurat et al.
2009; Kohlwein, 2010b). Tgl1 harbors the canonical lipase
catalytic triad, consisting of serine201, aspartate369 and
histidine396 (Jandrositz et al. 2005). In contrast, Tgl3,

Table 3 Glycerolipid turnover enzymes

Gene
Ino2 or Opi2

phenotype Enzyme

Mol
mass
(kDa)

Isoelectric
point

Molecules
per cella Locationbb

Transmembrane
domains

Phosphorylation
sitesc

CLD1 — CL specific
phospholipase A2

52 10.3 ND Mitochondria None None

NTE1 Ino2 PC specific
phospholipase B

187.1 8.19 521 ER 3 Several

PLB1 — PC/PE specific
phospholipase B

71.6 4.36 ND Plasma membrane,
ER, vesicles,
extracellular

None None

PLB2 — Nonspecific
phospholipase B

75.4 4.35 623 Plasma membrane,
ER, vesicles

None None

PLB3 — Nonspecific
phospholipase B

75 4.7 ND Cytoplasm, vacuole,
vesicles

None None

PLC1 — PI 4,5-P2 specific
phospholipase C

110.5 9.84 ND Cytoplasm None Few

PGC1 — PG specific
phospholipase C

37 8.93 3270 Mitochondria None None

SPO14 (PLD1) — PC specific
phospholipase D

195.2 7.58 49 Cytoplasm None Several

SAC1 (RSD1) Ino2 Nonspecific
polyphosphoinositide
phosphatase

71.1 7.75 48,000 ER, Golgi, vacuole 2 None

INP51 (SJL1) — PI 4,5-P2 phosphatase 108.4 6.7 98 Cytoplasm None None
INP52 (SJL2) — Nonspecific

polyphosphoinositide
phosphatase

133.3 8.97 ND Actin None Several

INP53 (SJL3,
SOP2)

— Nonspecific
polyphosphoinositide
phosphatase

124.6 7.18 1520 Actin None Several

INP54 — PI 4,5-P2 phosphatase 43.8 7.6 1200 ER None None
YRM1 — PI 3-P phosphatase 91 7.19 125 Cytoplasm None Few
FIG4 — PI 3,5-P2 phosphatase 101.7 5.52 339 Vacuole None None
DPP1 (ZRG1) — DGPP phosphatase/nonspecific lipid

phosphate
phosphatase

33.5 6.42 3040 Vacuole 5 Few

LPP1 — Nonspecific lipid
phosphate
phosphatase

31.5 8.25 300 Golgi 4 None

PHM8 — LysoPA phosphatase 37.7 5.14 195 Cytoplasm, nucleus None None
TGL1 — Triacylglycerol lipase,

sterylester hydrolase
63.0 6.83 1470 ER, lipid droplets None Several

TGL2 — Acylglycerol lipase 37.5 8.41 ND Mitochondria None None
TGL3 — Triacylglycerol lipase,

lysoPA
acyltransferase

73.6 8.50 3210 Lipid droplets 1 Few

TGL4 — Triacylglycerol lipase,
Ca++

dependent
phospholipase A2,
lysoPA acyltransferase

102.7 8.05 195 Lipid droplets None Several

TGL5 — Triacylglycerol lipase,
lysoPA
acyltransferase

84.7 9.84 358 Lipid droplets 1 Several

YJU3 — Monoacylglycerol lipase 35.6 8.5 2140 Lipid droplet, ER None None

Much of the information in the table may be found in the Saccharomyces Genome Database. The names in parentheses are aliases. Ino2, inositol auxotrophy; ND, not determined.
a Ghaemmaghami et al. 2003.
b Habeler et al. 2002; Kumar et al. 2002; Huh et al. 2003; Natter et al. 2005.
c Li et al. 2007; Bodenmiller et al. 2008

326 S. A. Henry, S. D. Kohlwein, and G. M. Carman

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001623
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004930
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001797
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005607
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001623
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004930


Tgl4, and Tgl5 (and also Nte1, see above) are members of
the patatin domain-containing family of (phospho) lipases,
characterized by a catalytic diad of serine and aspartate
(Kurat et al. 2006). The substrate specificities of the Tgl3,
Tgl4, and Tgl5 TAG lipases differ. Tgl5 preferentially hydrol-
yses TAG molecular species harboring very long chain fatty
acids (VLCFA) (Athenstaedt and Daum 2005), while Tgl3
also accepts DAG as a substrate in addition to TAG (Kurat
et al. 2006). Tgl3, Tgl4, and Tgl5 also possess lysoPA acyl-
transferase activities, and Tgl4 additionally functions as a
Ca++-dependent phospholipase A2 and steryl ester hydro-
lase (Rajakumari and Daum 2010a,b). Although Tgl1 also
contributes to TAG hydrolysis, its major activity is as a steryl
ester hydrolase, in conjunction with the YEH1- and YEH2-
encoded enzymes (Jandrositz et al. 2005; Koffel et al. 2005).
TGL2 encodes an acylglycerol lipase localized to mitochon-
dria, but its role in TAG homeostasis has not been clarified
yet (Ham et al. 2010). YJU3 encodes the major monoacyl-
glycerol (MAG) lipase in yeast (Heier et al. 2010), but yju3D
mutants do not display any detectable growth phenotype
when tested under multiple conditions (Heier et al. 2010).

Stationary phase cells shifted into fresh media rapidly
initiate TAG and steryl ester breakdown, which leads to
almost full depletion of cellular LD pools within 4–6 hr in lag
phase. This initial phase of TAG breakdown is governed by
the activity of TGL3- and TGL4-encoded lipases on LD and
the tgl3Δ tgl4Δ mutant strain exhibits a delay in entering
vegetative growth during exit from stationary phase (Kurat
et al. 2006). Tgl4 is constitutively present on LD and activa-
tion of Tgl4 by Cdc28p-dependent phosphorylation is in-
volved in TAG lipolysis that contributes to bud formation
exiting from stasis (Kurat et al. 2009). Resumption of
growth following stasis is also dependent on the DGK1-
encoded DAG kinase. In comparison to wild-type cells, sta-
tionary phase dgk1Δ cells fail to initiate growth when de
novo FA synthesis is impaired. The dgk1Δ mutant also fails
to mobilize TAG under these conditions and accumulates
TAG, phenotypes that are partially suppressed by the
pah1Δ mutation or by channeling DAG into PC synthesis
when choline is present (Fakas et al. 2011).

TAG synthesis and breakdown are also coordinated with
phospholipid metabolism during logarithmic growth. Mutants
with defects in TAG hydrolysis exhibit decreased synthesis of
inositol containing sphingolipids and decreased PC and PI
content during active growth (Rajakumari et al. 2010). Fur-
thermore, mutants defective in synthesis or hydrolysis of TAG
exhibit reduced capacity to restore cellular levels of PI when
exogenous inositol is resupplied following an interval of ino-
sitol starvation during logarithmic growth. Under these con-
ditions, alterations in the synthesis of inositol-containing
sphingolipids are also observed in the dga1Δ lro1Δ are1Δ
are2Δ strain (Gaspar et al. 2011).

Glycerolipid precursors

Fatty acid synthesis and regulation: The FA that are
esterified to phospholipids and TAG are derived from de

novo synthesis, the growth medium, and from lipid turnover
(Tehlivets et al. 2007). The spectrum of FA in yeast consists
mainly of C16 and C18 FA that are either saturated or mono-
unsaturated, harboring a single double bond between car-
bon atoms 9 and 10 (D9 desaturation). Whereas de novo FA
synthesis mostly takes place in the cytosol, all the enzymes
involved in FA desaturation and elongation are associated
with the ER membrane (Table 2) (Tehlivets et al. 2007).

Minor FA species are C12, C14, and very long chain FA, up
to C26. However, FA compositions vary substantially be-
tween strains and are also dependent on cultivation condi-
tions (Martin et al. 2007). Two different FA synthesis
pathways exist in yeast, as in mammalian cells (Tehlivets
et al. 2007): the major cytosolic pathway, which resembles
the “eukaryotic” type I pathway and is responsible for the
bulk synthesis of all major FA, and the mitochondrial (type II
pathway), which is organized similarly to the bacterial FA
biosynthetic pathway (Hiltunen et al. 2010). The latter is be-
lieved to synthesize FA up to C8 carbons, which serve as pre-
cursors for the synthesis of lipoic acid. Cytosolic FA synthesis
is initiated by the ACC1-encoded acetyl-CoA carboxylase,
which synthesizes malonyl-CoA from acetyl-CoA (Al-Feel
et al. 1992; Hasslacher et al. 1993). This reaction requires
a covalently bound biotin prosthetic group, which is at-
tached to lysine735 in the biotin-carrier domain of Acc1
by the BPL1-encoded biotin:apoprotein ligase. The FA syn-
thase complex is composed of two subunits, encoded by
FAS1 (Fas1, b-subunit) and FAS2 (Fas2, a-subunit) and is
organized as an a6/b6 heterooligomeric complex (Kuziora
et al. 1983; Schweizer et al. 1986; Chirala et al. 1987). Fas2
carries a pantetheine prostetic group on the acyl-carrier pro-
tein (ACP) domain, which is a central element in a cycling
series of reactions. In a first condensation step, malonyl-CoA
is condensed with pantetheine-bound acetyl-CoA to form
3-keto-acyl-ACP, which is reduced to 3-hydroxyacyl-ACP,
dehydrated to 2,3-trans-enoyl-ACP, and further reduced to
acyl(C+2)-ACP. Both reduction steps require NADPH and, as
a result, FA synthesis is a major consumer of this dinucleo-
tide. This multistep process results in the addition of two
carbon units to the growing FA chain and cycles up to seven
times, resulting in acyl-chains typically of 16 carbon atoms.
The newly formed FA is transferred to coenzyme A, to yield
cytosolic long chain acyl-CoA (Tehlivets et al. 2007). Acyl-
CoA molecules are precursors for all acylation reactions in-
volved in the synthesis of phospholipids, TAG, long chain
bases, ceramide, and steryl esters, and also serve as precur-
sors in protein acylation. The acyl-CoAs, whether derived
from FA de novo synthesis or lipid recycling, are subject to
elongation and desaturation, yielding the typical pattern of
saturated and unsaturated FA species (see below). Yeast also
contains an ACB1-encoded acyl-CoA binding protein, which
plays an important regulatory function in delivering acyl-CoA
into various pathways (Schjerling et al. 1996; Gaigg et al.
2001; Faergeman et al. 2004; Rijken et al. 2009). Mitochon-
drial FA synthesis involves enzymatic steps similar to those
catalyzed by the cytosolic FAS complex. However, in contrast
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to cytosolic FA synthesis, but resembling archae- and eubac-
terial type II fatty acid synthase, the reactions of FA synthesis
in mitochondria are catalyzed by individual polypeptides,
encoded by separate genes (Hiltunen et al. 2010).

Defects in the FAS1 or FAS2 genes encoding cytosolic FA
synthase lead to FA auxotrophy and can typically be rescued
by the addition of exogenous C14 or C16 FAs. However, defects
in ACC1 (Hasslacher et al. 1993) and BPL2 are lethal and
cannot be suppressed by the addition of long chain FA. The
essential role of these genes, when exogenous C14 and C16 FAs
are present, is most likely the requirement for malonyl-CoA in
the synthesis of essential VLCFA, which are components of gly-
cerophosphoinositol (GPI) anchors and sphingolipids (Pittet
and Conzelmann 2007; Dickson 2008; Dickson 2010). The
synthesis of VLCFAs is accomplished by an ER membrane-
localized elongase complex that acts on long chain acyl-CoA,
consisting of the condensing enzymes encoded by ELO1,
ELO2, and ELO3 (Oh et al. 1997), the b-ketoacyl-CoA reduc-
tase encoded by gene YBR159w (Han et al. 2002), the dehy-
dratase encoded by PHS1 (Denic and Weissman 2007; Kihara
et al. 2008), and the enoyl-CoA reductase, encoded by TSC13
(Kohlwein et al. 2001). Tsc13 accumulates within a specialized
region of the ER in juxtaposition to the vacuole, termed the
nucleus-vacuole junction (Pan et al. 2000) through interac-
tion with Osh1p and Nvj1p (Kvam et al. 2005). The physi-
ological role for a localization of just one component of the
FA elongation complex to this subregion of the ER is cur-
rently unclear, but indicates a role for VLCFA in the forma-
tion of microautophagic vesicles involved in piecemeal
autophagy of the nucleus (Kvam et al. 2005). Triple muta-
tions in all three condensing enzyme genes as well as muta-
tions in PHS1 or TSC13 are lethal, further supporting the
notion that VLCFAs are essential in yeast. Yeast also harbors
a single FA D9-desaturase encoded by OLE1, which localizes
to the ER (Stukey et al. 1989) and mutants defective in Ole1
require exogenous C16:1 or C18:1 FA for growth. Since FA
desaturation is an oxygen-dependent process (see below),
growth of yeast under anaerobic conditions also requires the
supplementation of these unsaturated FA.

In the absence of de novo FA synthesis or desaturation, as
in fas1, fas2, or ole1 mutants, and in wild-type cells under
anaerobic conditions, cellular growth is dependent on an
exogenous supply of FA. Under these conditions, the activity
of acyl-CoA synthetases (Table 2), encoded by FAA1, FAA2,
FAA3, FAA4, and FAT1 (Duronio et al. 1992; Harington et al.
1994; Johnson et al. 1994a,b; Watkins et al. 1998; Choi and
Martin 1999; Black and Dirusso 2007) is also required. The
acyl-CoA synthetases activate free FA with coenzyme A in an
ATP-dependent reaction, and are also believed to be re-
quired for FA uptake into yeast cells (Faergeman et al.
2001; Black and Dirusso 2007; Obermeyer et al. 2007).
Acyl-CoA synthetases differ in their substrate specificity
and subcellular localization and are present in the ER mem-
brane, plasma membrane, peroxisome, and LD (Natter et al.
2005; Black and Dirusso 2007). The acyl-CoA synthetase
Faa2 and the enzymes for FA b-oxidation, a cyclic series

of reactions breaking down FA into acetyl-CoA and generat-
ing FADH2 and NADH, are localized to the peroxisomes
(planned YeastBook chapter “Lipid particles and peroxi-
somes” by Kohlwein and van der Klei). FA uptake into yeast
cells is also mediated by an endocytotic mechanism that
requires the activity of Ypk1, the yeast ortholog of the hu-
man serum- and glucocorticoid-induced kinase (Jacquier
and Schneiter 2010). In the absence of acyl-CoA synthe-
tases, FA released by lipid turnover (see above) cannot be
activated and utilized for lipid synthesis. For this reason,
mutants lacking these activities excrete FA (Scharnewski
et al. 2008).

FA synthesis is regulated at multiple levels (Tehlivets
et al. 2007). ACC1, FAS1, and FAS2 expression is under
control of an UASINO element and coregulated with genes
involved in phospholipid synthesis (Chirala 1992; Schuller
et al. 1992) (see below). ACC1 expression is also regulated
by the SAGA protein complex and TFIID (Huisinga and Pugh
2004) and may therefore depend on histone acetylation.
ACC1 expression was also found to fluctuate during the cell
division cycle, with a peak of expression in early G1 phase
(Cho et al. 1998). Compensatory changes in ACC1 expres-
sion in mutants defective in Acc1 activity indicate an autor-
egulatory loop (Shirra et al. 2001). Expression of the FAS1
and FAS2 genes is regulated by the transcription factors
Gcr1, Reb1, Rap1, and Abf1 (Schuller et al. 1994; Greenberg
and Lopes 1996) and repressed by long chain FA (Chirala
1992). FAS1 is also regulated by the SAGA complex and
TFIID, and both genes show cell cycle-dependent expres-
sion, with a peak level at M/G1 (Spellman et al. 1998;
Huisinga and Pugh 2004).

Acc1 enzyme activity is greatly elevated in the snf1Δ mu-
tant and the data are consistent with Acc1 being a substrate
of AMP-activated protein kinase, encoded by the SNF1
(Woods et al. 1994; Shirra et al. 2001). Snf1 also regulates
chromatin by phosphorylating histones among other pro-
teins and, therefore, has multiple effects on expression of
genes, including ACC1, FAS1, and FAS2. Notably, FAS1 and
FAS2 promoter sequences differ, and the stoichiometry of
the FAS complex is established both by the level of FAS1
gene expression and Fas1 protein abundance (Schuller et al.
1992; Wenz et al. 2001; Tehlivets et al. 2007). Excess of
either protein is rapidly eliminated by degradation via vac-
uolar proteases (Fas1) or ubiquitination and proteasomal
digestion (Fas2), respectively (Peng et al. 2003).

Knowledge about the regulation of FA elongation leading to
VLCFA synthesis is limited. Microarray experiments have shown
that ELO1 expression is upregulated in the presence of myristic
acid (C14:0), consistent with the preference of the Elo1 protein
for this FA (Toke and Martin 1996). Expression of ELO1, ELO2,
and ELO3 genes also responds to stationary phase, nitrogen
limitation, glycosylation defects, or a-factor treatment, indicat-
ing a regulatory cross-talk between nutritional state and cell
proliferation to VLCFA synthesis (Gasch et al. 2000).

Ole1 is a nonheme iron-containing integral ER membrane
protein (Table 2), which harbors an intrinsic cytochrome b5
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domain as an electron carrier (Martin et al. 2007). To sub-
tract two electrons and two protons from the saturated acyl-
chain and transfer them to oxygen, Ole1 activity is comple-
mented by the activity of an NADH cytochrome b5 reductase
(dehydrogenase) that is also localized to the ER. Desatura-
tion of FA by Ole1 is a highly regulated, oxygen-requiring
process (Martin et al. 2007), which is discussed in detail in
the section below on cell biology of lipids.

Water soluble precursors of phospholipids, metabolism,
and regulatory roles: A number of water-soluble molecules
used in phospholipid synthesis, including inositol, choline, eth-
anolamine, serine, CTP, and S-adenosyl methionine (AdoMet)
and the enzymes involved in these reactions are largely
cytosolic (Table 2). However, choline and ethanolamine are
produced in yeast in the context of ongoing synthesis and
turnover of PE and PC in the membranes as discussed above.
Considerable attention has been paid to inositol and CTP,
which have major regulatory roles in phospholipid metabo-
lism. The effects of inositol on transcriptional regulation
UASINO-containing phospholipid biosynthetic genes controlled
by the Opi1 repressor are shown in Figure 3 and will be dis-
cussed in a subsequent section. The regulatory effects of the
soluble metabolites inositol, CTP, and S-adenosyl homocys-
teine (AdoHcy) on enzyme activity and metabolic flux in the
CDP-DAG pathway (Figure 4) are discussed here.

Inositol is the precursor to PI (Figure 2), which is essen-
tial to the synthesis of polyphosphoinositides (Strahl and
Thorner 2007), sphingolipids (Cowart and Obeid 2007;
Dickson 2008, 2010), and GPI anchors (Pittet and Conzel-
mann 2007). Inositol is derived from glucose-6-P via the
reactions catalyzed by the cytosolic INO1-encoded inositol-
3-P synthase (Donahue and Henry 1981; Klig and Henry
1984; Dean-Johnson and Henry 1989) and the INM1-
encoded inositol-3-P phosphatase (Murray and Greenberg
2000). Exogenously supplied inositol stimulates PI synthase
and inhibits PS synthase activity, alleviating the competition
with PI synthase for their common substrate, CDP-DAG (Fig-
ure 4). The presence of exogenous inositol leads to in-
creased PI synthesis and reduced levels of both CDP-DAG
and its precursor PA in wild-type cells (Kelley et al. 1988;
Loewen et al. 2004). TAG, which is derived from PA by the
action of Pah1 (Figure 2), is decreased in the presence of
inositol and increases in its absence (Gaspar et al. 2006,
2011). In addition, the levels of the complex sphingolipids,
which are derived from PI, are reduced when cells are de-
prived of inositol and increase when inositol is supplied
(Becker and Lester 1977; Hanson and Lester 1980; Jesch
et al. 2010). The changes that occur in phospholipid synthe-
sis and composition in response to exogenous serine (Kelley
et al. 1988) and choline (Gaspar et al. 2006) are much less
dramatic than the effects of exogenous inositol. However,
when inositol is present in the growth medium, serine
(Homann et al.1987), ethanolamine, and choline (Poole
et al. 1986) result in the reduction of the activities of PS
synthase and CDP-DAG synthase at the transcriptional level

(see below). Exogenous choline also results in a dramatic
change in the rate and mechanism of PC turnover, leading
to a switch from a phospholipase D to a phospholipase B-
mediated route (Dowd et al. 2001). The phospholipase re-
sponsible for turnover of PC under these conditions is Nte1
(Zaccheo et al. 2004).

CTP is derived from UTP by the cytosolic URA7- and
URA8-encoded CTP synthetase enzymes (Ozier-Kalogero-
poulos et al. 1991, 1994).

The nucleotide CTP plays a critical role in phospholipid
synthesis as the direct precursor of the high-energy inter-
mediates CDP-DAG, CDP-choline, and CDP-ethanolamine
that are used in the CDP-DAG and Kennedy pathways
(Figure 2) (Chang and Carman 2008). It is also used as
the phosphate donor for the synthesis of PA by DAG kinase
(Han et al. 2008b). CTP synthetase (Ozier-Kalogeropoulos
et al. 1991, 1994) that produces CTP is allosterically
inhibited by the product (Yang et al. 1994; Nadkarni et al.
1995), and this regulation ultimately determines the intra-
cellular concentration of CTP (Yang et al. 1994; McDonough
et al. 1995). CTP inhibits the CTP synthetase activity by in-
creasing the positive cooperativity of the enzyme for UTP,
and at the same time by decreasing the affinity for UTP
(Yang et al. 1994; Nadkarni et al. 1995). However, CTP
synthetases containing an E161K mutation are less sensitive
to CTP product inhibition (Ostrander et al. 1998), and cells
expressing the mutant enzymes exhibit a 6- to 15-fold in-
crease in the CTP level (Ostrander et al. 1998). They also
show alterations in the synthesis of membrane phospholi-
pids, which include a decrease in the amounts of PS and
increases in the amounts of PC, PE, and PA (Ostrander
et al. 1998). The decrease in the amount of PS results from
direct inhibition of PS synthase activity by CTP (McDonough
et al. 1995), and this inhibition favors the synthesis of phos-
pholipids by the Kennedy pathway (Figure 4). The increase
in PC synthesis is ascribed to a higher utilization of the CDP-
choline branch of the Kennedy pathway due to the stimula-
tion of choline P cytidylyltransferase activity (McDonough
et al. 1995; Ostrander et al. 1998) by increased substrate
availability of CTP (McDonough et al. 1995; Kent and Carman
1999). Likewise, the increase in PE synthesis could be at-
tributed to stimulation of ethanolamine-P cytidylyltransfer-
ase activity. The increase in PA content may result from the
stimulation of DAG kinase activity by increased availability
of its substrate CTP (Han et al. 2008b). CTP also inhibits
the activity of Pah1 (Wu and Carman 1994), another factor
that contributes to an elevation of PA content. The cells
expressing the E161K mutant CTP synthase excrete inositol
(Ostrander et al. 1998), a characteristic phenotype that typi-
fies the misregulation of UASINO-containing phospholipid
synthesis genes (see below) in cells that accumulate an ex-
cess of PA (Carman and Henry 2007). It is unclear whether
UASINO-containing genes in the CDP-DAG and Kennedy
pathways are derepressed in CTP overproducing cells, but
the overriding regulation that governs the utilization of the
two pathways appears to be biochemical in nature.
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AdoHcy is a product of the AdoMet-dependent methylation
reactions that are catalyzed by Cho2 and Opi3 in the CDP-
DAG pathway (Figure 2). SAH1-encoded AdoHcy hydrolase
(Malanovic et al. 2008) requires NADH for the hydrolytic
breakdown of AdoHcy to adenosine and homocysteine
(Takata et al. 2002). AdoHcy (Figure 4) is a competitive
inhibitor of the phospholipid methyltransferase enzymes
(Gaynor and Carman 1990). Thus, down-regulation of the
AdoHcy hydrolase causes the accumulation of AdoHcy and
the inhibition of PC synthesis, which leads to an increase in
PA content and consequently, as described below, to the de-
repression of UASINO-containing genes (Malanovic et al.
2008). Although the effects of AdoHcy on phospholipid com-
position have not been addressed, its accumulation causes an
increase in TAG synthesis and LD content (Malanovic et al.
2008), further underscoring the metabolic interconnection
between phospholipid and TAG homeostasis discussed above.

Cell Biology of Lipids

In yeast, most subcellular membranes are composed of
similar glycerophospholipid classes but the quantitative
phospholipid composition of subcellular organelles differs
substantially (Schneiter et al. 1999). Moreover, as described
above, multiple cellular organelles and compartments con-
tribute to glycerolipid metabolism (Figure 2, Tables 1–3).
While multiple compartments contribute to lipid synthesis
in yeast (Zinser et al. 1991; Natter et al. 2005), most reac-
tions are confined to single membrane compartments. Thus,
extensive regulated flux of lipids, across and among individ-
ual membranes and organelles, is required to enable the cell
to adjust lipid composition in specific compartments under
changing growth conditions. A number of mechanisms in-
volved in these complex interactions have been identified.

For example, a set of membrane-bound flippases are
known to govern transmembrane movement of phospholipids
(Pomorski et al. 2004; Holthuis and Levine 2005). Intermem-
brane transfer of lipids is facilitated by a family of proteins,
termed oxysterol-binding protein (OSBP) related proteins
(ORP), of which seven members, Osh1–7, with overlapping
functions, exist in yeast (Beh and Rine 2004). Some of the
yeast Osh proteins have been localized to membrane con-
tacts sites (Levine and Loewen 2006; Raychaudhuri and
Prinz 2010). While none of these genes individually are
essential, simultaneous deletion of all seven OSH genes is
lethal and conditional alleles, following a shift to restrictive
conditions, result in pleiotropic effects on vesicular traffick-
ing and phospholipid and sterol composition of membranes,
as do combinations of individual deletions (Beh and Rine
2004; Fei et al. 2008). The six members of the Sec14 super-
family constitute another major class of proteins involved in
sensing and regulating membrane lipid composition (Griac
2007; Bankaitis et al. 2010). The five Sec14 homologs
(Sfh1–5) share 28–76% similarity to Sec14 (Griac 2007)
and localize to multiple subcellular organelles (Schnabl
et al. 2003). Sec14, which performs an essential function

at the Golgi, was originally identified as a PI/PC transfer
protein, but its role in establishing phospholipid homeostasis
is complex (Bankaitis et al. 2010).

In some instances, movement of lipids between mem-
brane compartments is required to carry out a sequence of
reactions. For example, PS is synthesized in the ER, but the
major PS decarboxylase, Psd1, is located in the mitochon-
dria (Figure 2, Table 1). Subsequently, the PE produced by
Psd1 must be transported back to the ER to undergo meth-
ylation leading to PC. PS is transported into the mitochon-
dria by an ubiquitin-regulated process that is insensitive to
disruption of vesicular trafficking and involves specialized
regions of apposition of mitochondria and ER known as the
mitochondria-associated ER or MAM (Clancey et al. 1993;
Trotter et al. 1993; Trotter and Voelker 1995; Achleitner
et al. 1999; Voelker 2003; Osman et al. 2011). An ER–
mitochondria tethering complex potentially involved in
movement of phospholipids between the ER and mitochon-
dria has been described (Kornmann et al. 2009).

The complex relationship between phospholipid metabo-
lism in the ER and the synthesis and breakdown of cytosolic
LD represents another example of the intricate interaction
among cellular compartments that occurs in the course of lipid
metabolism. LD are not merely storage depots for TAG and
steryl esters. They are metabolically active; harboring multiple
enzymes involved in lipid metabolism (Athenstaedt et al.
1999a; Rajakumari et al. 2008; Goodmann 2009; Kohlwein
2010b) (See also chapter: Lipid Droplets and Peroxisomes).
Interaction of LD with the ER, mitochondria, and peroxisomes
has been reported (Goodmann 2009). Pah1 clearly plays a crit-
ical role in TAG synthesis, LD formation, and the balance
between nuclear/ER membrane proliferation and LD forma-
tion (Carman and Han 2009a; Adeyo et al. 2011). Several
enzymes involved in TAG synthesis show a dual localization
to the ER and LD (Figure 2, Table 1), including acyl-DHAP
reductase (Ayr1), glycerol-3-P acyltransferase (Gpt2), and
acyl-CoA–dependent DAG acyltransferase (Dga1). Formation
of LD is believed to occur between the leaflets of the ER
membrane, but alternative models such as vesicular trafficking
have also been suggested (Thiele and Spandl 2008; Farese
and Walther 2009; Guo et al. 2009). The close interaction
of LD with mitochondria and peroxisomes also underscores
the important role of LD in metabolism (Goodmann 2009).
TAG levels fluctuate drastically during cellular growth and
division, and multiple conditions contribute to the level of
TAG storage in LD in stationary phase cells (Kurat et al.
2006; Czabany et al. 2007; Daum et al. 2007; Rajakumari
et al. 2008; Zanghellini et al. 2008). As cells exit stationary
phase, TAG hydrolysis supplies precursors for membrane lipid
synthesis. As active cellular growth progresses, de novo FA
synthesis increases, satisfying cellular requirements for lipid
synthesis but even while TAG turnover is still in progress, de
novo formation of TAG and LD is initiated (Kurat et al. 2006;
Zanghellini et al. 2008). Methods for imaging-based screening
of mutant libraries have been designed to identify factors in-
volved in LD content, morphology, and mobilization (Wolinski

330 S. A. Henry, S. D. Kohlwein, and G. M. Carman

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003389
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003834
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000845
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000081
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001043
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004684
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004684
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001574
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003681
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004684
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004684
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005113
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005113
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004775
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001386
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001775
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005771


and Kohlwein 2008; Wolinski et al. 2009) and screens using
such methods have identified .200 genes that potentially
influence these processes (Szymanski et al. 2007; Fei et al.
2008). However, there is surprisingly little overlap between
the mutants identified in the published screens, indicating that
current screens are far from being saturated.

Roles of lipids in organelle function and morphology

Due to the ubiquitous presence of most phospholipids in all
subcellular membranes it can be difficult to assess specific
phospholipid functions, in particular organelles. However,
quite specific functions have been attributed to several lipids
in the mitochondrion. For example, PE synthesized in the
mitochondria by Psd1 plays an important role in stabilizing
mitochondrial protein complexes (Birner et al. 2003; Osman
et al. 2009a). Consequently, the psd1Δ mutant is nonviable
in conjunction with defects in components of the prohibitin
complex, which functions as a protein and lipid scaffold and
ensures the integrity and functionality of the mitochondrial
inner membrane (Osman et al. 2009b; Potting et al. 2010;
van Gestel et al. 2010; Osman et al. 2011). In another exam-
ple, CL, which is present only in the mitochondrion (Li, G.
et al. 2007), plays an important role in mitochondrial genome
stabilization and higher order organization of components of
the mitochondrial respiratory chain (Koshkin and Greenberg
2002; Zhang et al. 2003; Zhong et al. 2004; Mileykovskaya
et al. 2005; Joshi et al. 2009). However, CL function reaches
beyond the mitochondria, indirectly regulating morphology
and acidification of the vacuole through the retrograde
(RTG2) signaling pathway and the NHX1-encoded vacuolar
Na+/H+ exchanger (Chen et al. 2008). Lack of CL in crd1Δ
mutants is in part compensated by an upregulation of the PE
content, which is dependent on the mitochondrial synthesis
through Psd1 (Gohil et al. 2005). Defects in Crd1 are also, in
part, compensated by an increase in the precursor lipid PGP.
Accordingly, mutation of the PGS1 gene encoding PGP syn-
thase leads to more pronounced mitochondrial defects and
a petite negative phenotype (Janitor et al. 1996; Chang et al.
1998a).

Alterations in organelle morphology and/or function
observed in response to changes in lipid composition due
to mutation or pharmacological inhibition of enzymes
(Schneiter and Kohlwein 1997) provide tantalizing clues
as to the roles of specific lipids. Notably, the pah1Δ mutant
exhibits the expansion of the nuclear/ER membrane and up-
regulation of phospholipid biosynthesis genes (Santos-Rosa
et al. 2005). As discussed previously, dephosphorylation of
PA by Pah1 provides DAG for the synthesis of TAG, as well
as PE and PC in the Kennedy pathway. Consequently, the
pah1Δ mutant has elevated PA levels, which result in up-
regulation of phospholipid biosynthesis (see below) and
membrane proliferation (Han et al. 2005; Carman and
Henry 2007; Carman and Han 2009b). A number of mutants
defective in FA metabolism also exhibit morphological ab-
normalities. For example, conditional mutants defective in
FA desaturation (ole1/mdm2) show defective mitochondrial

morphology and distribution upon cell division (Stewart and
Yaffe 1991; Tatzer et al. 2002). The finding that several
dozen proteins species are required to sustain cell viability
in the presence of unsaturated FA suggests an enormously
complex network of processes and interactions to maintain
membrane homeostasis and function (Lockshon et al. 2007).
In another example, a conditional acc1 mutant defective in
FA de novo synthesis has impaired morphology of the vacu-
ole due to reduced acylation of Vac8 that is involved in
stabilizing the vacuolar membrane and vacuole inheritance
(Schneiter et al. 2000). Mutants defective in FA elongation
show similar fragmentation of the vacuole due to impaired
synthesis of sphingolipids, which are important for the sta-
bility of the vacuolar ATPase complex (Chung et al. 2003).

Due to their important roles in protein modification,
myristic and palmitic acid affect the membrane association
of numerous proteins and consequently influence signaling,
membrane function and organelle morphology (Dietrich and
Ungermann 2004). NMT1 encodes the essential N-myristoyl
transferase that attaches coenzyme A-activated myristic acid
(C14-CoA) to a glycine residue close to the N-terminus of
target proteins, resulting in cleavage of the peptide bond
and N-terminal glycine acylation (Towler et al. 1987). Al-
though the myristoyl residue is shorter than the typical C16

or C18 chain length found in membrane phospholipids and,
therefore may not fully interdigitate into a membrane leaf-
let, it serves an essential function in promoting membrane
association of proteins (Duronio et al. 1989). Palmitoylation
of internal cysteine residues within the peptide chain plays
an important role in post-translational modification of some
50 proteins in yeast (Roth et al. 2006), modulating mem-
brane association, folding and activity. Protein palmitoyla-
tion is catalyzed by seven members of the “Asp-His-His-Cys-
cystein-rich“ (DHHC-CRD) domain family of proteins, and
includes the Erf2/Shr5 complex, Akr1, Akr2, Pfa3, Pfa4,
Pfa5, and Swf1. Among the substrates for palmitoylation
are Vac8, SNAREs, and Ras2, indicating important regula-
tory functions for this FA modification of proteins in
multiple pathways involved in membrane trafficking and
signaling.

Mechanisms of compartmentalization and localization of
enzymes of lipid metabolism

Many enzymes involved in glycerolipid metabolism have
transmembrane domains (Tables 1–3), which anchor the pro-
teins in their specific membrane environment and promote
access to hydrophobic lipid substrates. However, several
membrane-associated enzymes lack defined transmembrane
spanning domains andmembrane interaction is mediated, per-
haps in a regulated manner, with specific membrane-resident
anchor proteins. For example, PIK1-encoded PI 4-kinase
binds to the membrane through Frq1 and the VPS34-
encoded PI 3-kinase binds through Vps15 (Strahl and
Thorner 2007). In addition, enzymes may bind to the mem-
brane through specific interaction with lipids in the mem-
brane, such as PI 3-P, PI 4-P, PI 3,5-P2 and PI 4,5-P2 through
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PH, PX, FYVE or ENTH domains (Strahl and Thorner 2007).
A number of enzymes involved in lipid biosynthesis utilize
water soluble lipid precursors, including the choline and
ethanolamine kinases and the enzymes of the FAS complex,
involved in long chain FA synthesis, and are localized to the
cytosol. Acyl-CoA, generated by the FAS complex, has
a highly amphiphilic structure and easily associates with
membrane surfaces, facilitating the subsequent incorpora-
tion of the acyl chains into lipids by membrane-bound
enzymes. However, Pah1 is an example of an enzyme that
is associated with both cytosolic and membrane compart-
ments. PA, the substrate for Pah1, is present in the mem-
brane, but the largest pool of Pah1 is cytosolic, highly
phosphorylated and inactive. Pah1 must be dephosphory-
lated by the Nem1-Spo7 complex in order to be functional
in vivo (Santos-Rosa et al. 2005; Han et al. 2006; Carman
and Han 2009a; Choi et al. 2011). Dephosphorylation of
Pah1 by the Nem1-Spo7 complex leads to its membrane
association and its activation (Choi et al. 2011), leading to
the production of DAG and TAG and the lowering of PA
levels, which in turn affects regulation of phospholipid bio-
synthetic genes (see below) (Carman and Henry 2007;
Carman and Han 2009b).

Regulation of lipid metabolism in response to
membrane function

Several regulatory circuits have been uncovered that gov-
ern, by different mechanisms, the cross-talk between mem-
brane function and lipid synthesis. Proteins involved in this
regulation may sense specific changes in lipid composition,
membrane charge, fluidity, or curvature. One such mecha-
nism controls the expression of the fatty acid desaturase,
Ole1, by the ER membrane-bound transcription factors
Mga2 and Spt23, which are cleaved and released from the
membrane in response to changes in membrane fluidity or
permeability (Hoppe et al. 2000). Both proteins are synthe-
sized as larger, ER membrane-bound proteins that are ubiq-
uitinated and cleaved by the activity of the 26S proteasome
under low oxygen conditions, in conjunction with the ubiq-
uitin-selective chaperone CDC48UFD1/NPL4. This cleavage
detaches the soluble fragments from their membrane
anchors, and allows them to enter the nucleus to control
transcription of OLE1 and several other genes through the
low oxygen response (LORE) promoter element. Proteaso-
mal cleavage of Mga2 and Spt23 requires the essential E3
ubiquitin ligase, Rsp5, and lack of this activity results in
a cellular requirement for unsaturated FA. Cleavage of
Spt23 and Mga2 in the ER is believed to be regulated by
the membrane environment, adjusting membrane lipid com-
position through the control of FA desaturation. Under nor-
moxic conditions, OLE1 expression is activated by the
oxygen-responsive transcription factor Hap1. Addition of
unsaturated FA, including linoleic acid (C18:2) or arachi-
donic acid (C20:4), which are normally not present in yeast,
results in a drastic and rapid reduction of OLE1 mRNA ex-

pression and stability. However, low oxygen tension leads to
a massive induction of OLE1 expression through the LORE
element present in its promoter. This induction is believed to
increase efficiency of FA desaturation to support cellular
growth under oxygen limiting (hypoxic) conditions (Martin
et al. 2007; see also the chapter on Lipid Droplets and Per-
oxisomes for more discussion of fatty acid metabolism and
regulation). Mga2 (but not Spt23) was also shown to be
responsible for the rapid, but transient, up-regulation of
OLE1 and other LORE-containing genes observed when ino-
sitol is added to cultures of wild-type yeast growing loga-
rithmically in the absence of inositol (Jesch et al. 2006).
Regulation of the phospholipid biosynthetic genes contain-
ing the UASINO promoter element also occurs in response to
changes in the lipid composition in the ER membrane,
through the binding of the Opi1 repressor to PA (see below).
The ER is also the locus of complex regulatory cross-talk
involving membrane expansion, the secretory pathway, the
unfolded protein response (UPR) pathway, and phospho-
lipid metabolism (Cox et al. 1997; Travers et al. 2000;
Block-Alper et al. 2002; Chang et al. 2002, 2004; Hyde
et al. 2002; Brickner and Walter 2004; Jesch et al. 2006;
Gaspar et al. 2008; Schuck et al. 2009).

Another example of regulation of lipid metabolism in yeast
in response to changing membrane conditions was discovered
in the course of analysis of a cho2Δ opi3Δ mutant strain com-
pletely defective in PC formation via the PE methylation path-
way (Boumann et al. 2006). When this mutant is deprived of
choline, PC levels decline and as this process progresses, con-
comitant changes in acyl-chain distribution occur in PC and
other phospholipids, especially PE. However, similar changes
were not observed in the neutral lipid fraction. The shortening
and increased saturation of PE acyl chains decreases the bi-
layer forming potential of PE and Boumann et al. (2006) sug-
gest that phospholipid remodeling under these conditions
may provide a mechanism for maintaining intrinsic membrane
curvature. The nature of such a mechanism has not yet been
defined, but yeast has a number of proteins harboring a BAR
domain, including Rvs161 and Rvs167, which bind to lipo-
somes in a curvature-dependent manner and promote tubule
formation in vitro. In vivo studies in yeast indicate inappropri-
ate regulation of phosphoinositide and sphingolipid metabo-
lism impinges on Rsv161 and Rsv167 function (Ren et al.
2006; Youn et al. 2010). The Rim101 pathway, which is in-
volved in regulating cellular pH in response to alkaline con-
ditions and cell wall biogenesis, also appears to be involved in
sensing membrane curvature (Mattiazzi et al. 2010).

Genetic Regulation of Glycerolipid Synthesis

In wild-type cells, both glycerolipid composition and the
expression of lipid biosynthetic genes are influenced by
a wide variety of growth conditions, including growth
phase, temperature, pH, and the availability of nutrients
such as carbon, nitrogen, phosphate, zinc, and lipid pre-
cursors. Transcript levels of certain lipid biosynthetic genes
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in yeast are also regulated by message stability. A number of
viable mutants defective in genes encoding lipid metabolic
enzymes, transporters, and regulatory factors exhibit changes
in lipid composition. These complex and interrelated topics
have been the subjects of numerous reports and reviews
(Henry 1982; Carman and Henry 1989; Paltauf et al. 1992;
Henry and Patton-Vogt 1998; Carman and Henry 1999;
Gardocki et al. 2005; Jesch and Henry 2005b; Santos-Rosa
et al. 2005; Carman and Henry 2007; Chen et al. 2007a; Daum
et al. 2007; Gaspar et al. 2007; Li, G. et al. 2007; Patton-Vogt
2007; Gaspar et al. 2008; Schuiki et al. 2010; Young et al.
2010; Carman and Han 2011), as discussed below with a focus
on the transcriptional regulation of lipid biosynthetic genes in
response to PA.

Regulation of transcript abundance by mRNA degradation

The transcript abundance of some glycerolipid metabolic
genes is regulated at the level of mRNA degradation. Genes
that exhibit this level of regulation include CHO1 (Choi and
Carman 2007) and OLE1 (Gonzalez and Martin 1996;
Vemula et al. 2003; Martin et al. 2007). In wild-type cells,
CHO1 mRNA is moderately stable with a half-life of 12 min
when compared with other S. cerevisiae mRNAs that have
half-lives ranging from 1 to 60 min (Herrick et al. 1990).
However, CHO1 mRNA is greatly stabilized with a half-life
.45 min in respiratory mutants (Choi and Carman 2007).
This results in increased levels of the PS synthase protein
and its associated activity (Choi and Carman 2007). Given
that CHO1 mRNA decays by the primary 59–39 decay path-
way when cells are respiratory sufficient (Parker and Song
2004), it is reasonable to predict that the rate of deadeny-
lation and/or decapping may be reduced when respiration is
blocked. The OLE1 transcript is destabilized when cells are
supplemented with unsaturated FA (Gonzalez and Martin
1996; Vemula et al. 2003; Martin et al. 2007). This FA-reg-
ulated decay of OLE1 mRNA occurs through both the 59–39
general pathway and via exosomal 39–59 degradation activ-
ities (Martin et al. 2007).

Transcriptional regulation by inositol and choline

Expression of the INO1 gene (Figure 3, Table 2) is repressed
by $100-fold in the presence of inositol. Exogenous choline
results in an additional severalfold reduction in INO1 tran-
script level but only if inositol is also present. However, in
the absence of exogenous inositol, choline has little or no
effect on INO1 expression (Hirsch and Henry 1986; Griac
et al. 1996; Jesch et al. 2005a). Other genes encoding
enzymes of lipid metabolism, including many involved in
PC biosynthesis, show similar patterns of regulation in re-
sponse to inositol and choline (Carman and Henry 1989,
1999, 2007; Paltauf et al. 1992; Henry and Patton-Vogt
1998; Jesch and Henry 2005; Jesch et al. 2005; Chen
et al. 2007a; Carman and Han 2011). However, no other
gene in the yeast genome shows as great a repression ratio
in the presence of inositol and choline as INO1 (Santiago
and Mamoun 2003; Jesch et al. 2005, 2006).

The regulation (Figure 3) controlling the expression of
INO1 and coregulated genes of lipid metabolism has been
the subject of a number of recent comprehensive reviews
(Carman and Henry 2007; Chen et al. 2007a; Carman and
Han 2011). Expression of these genes is controlled by the
cis-acting element, consensus 59CATGTGAAT39 (Bachhawat
et al. 1995; Greenberg and Lopes 1996), known as the ino-
sitol sensitive upstream activating element (UASINO), or al-
ternatively as the inositol/choline responsive element
(ICRE) (Schuller et al. 1992). The Ino2-Ino4 heterodimer,
which is required for activation of transcription of UASINO-
containing genes, binds to this site (Ambroziak and Henry
1994). Genome-wide location analysis confirmed the se-
quence of the UASINO element and the binding of the
Ino2-Ino4 heterodimer to the element across the genome
(Lee et al. 2002; Harbison et al. 2004). Since both Ino2
and Ino4 are required for activation of expression of INO1,
ino2, and ino4 mutants exhibit inositol auxotrophy (Ino2

phenotype). However, since many genes involved in lipid
metabolism in addition to INO1 contain the UASINO pro-
moter element (Greenberg and Lopes 1996), the ino2 and
ino4 mutants exhibit altered phospholipid compositions in-
cluding reduced PC content, even when growing in the pres-
ence of inositol (Loewy and Henry 1984). The fact that the
INO2 regulatory gene also contains a UASINO element in
its promoter, and is auto-regulated in response to inositol,
adds an additional layer of complexity to this regulatory
mechanism (Ashburner and Lopes 1995, Chen et al.
2007a). The INO1 locus has also recently been reported to
localize at the nuclear periphery when it is being actively
transcribed (Brickner and Walter 2004), through a chroma-
tin-mediated mechanism that persists for several genera-
tions following addition of inositol (Brickner et al. 2007;
Brickner 2009).

Repression of UASINO-containing genes in response to the
presence of exogenous inositol involves the Opi1 repressor
(Hirsch and Henry 1986; White et al. 1991) (Figure 3),
which interacts with transcriptional activation domains in
Ino2 (Wagner et al. 2001; Dietz et al. 2003). Opi1 has also
been reported to interact with a number of other regulatory
proteins (Chen et al. 2007a), including the pleiotropic co-
repressors, Sin3 and Ssn6 (Jaschke et al. 2011). Deletion of
the OPI1 gene renders the cell incapable of repressing
UASINO genes in response to inositol, and leads to expression
of UASINO-containing genes at levels that exceed their nor-
mal derepressed levels by severalfold, whether inositol or
choline are present or not (White et al. 1991; Santiago
and Mamoun 2003; Jesch et al. 2005). Such high levels of
INO1 expression lead to over-production of inositol (the
Opi2 phenotype for which the opi1 mutants are named)
and the excess inositol excreted from Opi2 mutants can be
detected in a plate assay (Greenberg et al. 1982a,b). In
addition, even when growing in the absence of inositol,
opi1Δ cells have elevated levels of PI and levels of other
lipids that resemble those of wild-type cells growing in the
presence of inositol (Klig et al. 1985).
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Role of PA in regulation of UASINO-containing genes

Opi2 phenotypes are also associated with mutants (cho1,
cho2, and opi3) defective in the synthesis of PC via the
CDP-DAG pathway (Greenberg et al. 1983; Letts et al.
1983; Summers et al. 1988; McGraw and Henry 1989) (Fig-
ure 2). Similar to the opi1 mutant, cho2 and opi3 mutants
overexpress INO1 and fail to repress INO1 and other
UASINO-containing genes in response to inositol. However,
in contrast to opi1 mutants, the constitutive overexpression
of INO1 and Opi2 phenotypes of opi3 and cho2 mutants are
suppressed when they are grown in the presence of exoge-
nous soluble precursors that restore PC biosynthesis by en-
tering the Kennedy pathway downstream of their respective
genetic lesions in PE methylation (Figure 2). Thus, the Opi2

phenotype is eliminated and PC biosynthesis is restored in
cho2 mutants grown in the presence of monomethylethanol-
amine (MME), dimethylethanolamine (DME), or choline
(Summers et al. 1988), while these phenotypes are cor-
rected only by DME and choline in opi3 mutants (McGraw
and Henry 1989). Such observations led to the hypothesis
that the mechanism by which the yeast cell senses the pres-
ence of exogenous inositol, choline, and other phospholipid
precursors, such as serine, ethanolamine, MME, and DME,
involves their effect on phospholipid synthesis (Carman and
Henry 1989).

Further support for this hypothesis came from studies
involving strains carrying temperature-sensitive mutations
of the essential PI/PC transport protein, Sec14. While a full
discussion of the biology of Sec14 is beyond the scope of this
review article, the role it has played in discovery that PA is
the signaling molecule controlling INO1 expression will be
covered in brief here. The growth and secretory phenotypes
of sec14ts mutants are suppressed by mutations in any one of
the three genes encoding enzymes in the Kennedy pathway
for PC biosynthesis (i.e., cki1, pct1, and cpt1) (Cleves et al.
1991). Such strains (for example: sec14ts cki1Δ) have Opi2

phenotypes and excrete choline (Opc2 phenotype) (Patton-
Vogt et al. 1997). These phenotypes are due to increased PA
levels resulting from elevated turnover of PC, catalyzed by
the SPO14-encoded phospholipase D (Sreenivas et al. 1998;
Xie et al. 1998). These observations led to the identification
of PA as the probable signaling lipid responsible for dere-
pression of INO1 and coregulated genes in the absence of
exogenous inositol (Griac et al. 1986; Summers et al. 1988;
McGraw and Henry 1989; Henry and Patton-Vogt 1998).
This model is consistent with the Opi2 phenotypes of
mutants defective in reactions in the CDP-DAG pathway
for PC synthesis and the fact that these phenotypes are sup-
pressed by supplying these mutants with precursor that
enters the Kennedy pathway downstream of the defect in
the CDP-DAG pathway (Henry and Patton-Vogt 1998). In-
terruption of any of the reactions downstream of PA via the
CDP-DAG pathway leads to a buildup of PA and overexpres-
sion of INO1, which raises endogenous inositol production.
This leads to excretion of inositol and renders the cell in-

sensitive to exogenous inositol (Henry and Patton-Vogt
1998). Metabolites that enter the Kennedy pathway down-
stream of the specific metabolic lesion counteract PA build
up by increasing the use of DAG in the Kennedy pathway
(Figure 2). Also consistent with this model is the Opi2 phe-
notype observed in cells engineered to have reduced expres-
sion of PIS1, thereby slowing PI synthesis and raising PA
levels (Jani and Lopes 2009).

The mechanism by which PA regulates INO1 expression
was elucidated when Loewen et al. (2004) showed that
Opi1 contains PA binding domains that facilitate its interac-
tion with PA in the perinuclear ER in cells growing in the
absence of inositol (Figure 3). Opi1 also contains a motif
known as FFAT (two phenylalanines in an acidic tract) that
binds to Scs2, an integral ER membrane protein (Loewen
et al. 2003). To remain localized to the ER membrane in the
absence of inositol, Opi1 must interact with both Scs2 and
PA. In wild-type yeast cells, addition of inositol to the
growth medium leads to a dramatic increase in the rate of
synthesis of PI, resulting in consumption of both PA and
CDP-DAG. As PA levels drop, Opi1 is released from the ER
and enters the nucleus where it represses expression of INO1
and other UASINO-containing genes (Loewen et al. 2004).
Consistant with this model, mutations in Opi1 that interfere
with its interaction with either PA or Scs2 result in Ino2

phenotypes (Loewen et al. 2004) and scs2 mutants also ex-
hibit an Ino2 phenotype (Nikawa et al. 1995). Increased PC
synthesis via the Kennedy pathway is also characteristic of
scs2 mutants, a phenotype that has not been fully explored,
and mutations blocking PC synthesis by this route suppress
both the Ino2 phenotype and increased synthesis of PC in
the scs2 mutant (Kagiwada and Zen 2003). Since, as de-
scribed above, blocking the reuse of choline via the Kennedy
pathway should reduce the draw on PA and thus enhance
INO1 expression, these phenotypes are consistent with the
model of Loewen et al. (2004) concerning Opi1 function
(Figure 3).

Regulation of gene expression by zinc

The expression of several phospholipid synthesis genes is
also regulated in coordination with mechanisms that control
zinc homeostasis (Figure 3) (Carman and Han 2007; Eide
2009). Zinc is an essential nutrient required for the growth
and metabolism of S. cerevisiae (Eide 2009). It is a cofactor
for key metabolic enzymes and a structural component of
a diverse set of proteins that include chaperons, lipid bind-
ing proteins, and transcription factors (Vallee and Falchuk
1993; Schwabe and Klug 1994; Ellis et al. 2004; Eide 2009).
Cells grown in medium lacking zinc exhibit the induced
expression of plasma membrane and vacuolar membrane
zinc transporters (encoded by ZRT1, ZRT2, ZRT3, and
FET4) to maintain the cytosolic levels of zinc (Guerinot
and Eide 1999; Eide 2003, 2009). At the same time, a re-
duction in zinc causes changes in membrane phospholipid
composition that are brought about by changes in the ex-
pression of phospholipid synthesis enzyme activities (Han
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et al. 2004, 2005; Iwanyshyn et al. 2004; Kersting and Carman
2006; Carman and Han 2007). It is postulated that changes
in phospholipid composition may govern the insertion, to-
pology, and/or function of the membrane-associated zinc
transporters (Carman and Han 2007).

The regulation of phospholipid synthesis genes by zinc
availability (Figure 3) involves the control of PA content
through the activation of PI synthase function. This regula-
tion occurs in the absence of inositol supplementation and is
mediated by the zinc-sensing and zinc-inducible transcrip-
tional activator Zap1 and the zinc-responsive cis-acting ele-
ment (UASZRE) (Carman and Han 2007). Zinc depletion
causes an increase in the synthesis of PI through increased
expression of PI synthase (Iwanyshyn et al. 2004; Han et al.
2005). This regulation is controlled by the interaction of
Zap1 with a UASZRE in the PIS1 promoter (Iwanyshyn et al.
2004; Han et al. 2005). As discussed above, increased PI
synthesis causes a decrease in PA content, which results in
the Opi1-mediated repression of UASINO-containing genes
and a decrease in the activities of the CDP-DAG pathway
enzymes (Iwanyshyn et al. 2004). The major effects of zinc
depletion on phospholipid composition include an increase
in PI and a decrease in PE (Iwanyshyn et al. 2004). Although
levels of enzymes in the CDP-DAG pathway are reduced by
zinc depletion, the amount of PC is not significantly affected
(Iwanyshyn et al. 2004). This is attributed to the Zap1-
mediated inductions of choline kinase and ethanolamine
kinase for PC synthesis via the Kennedy pathway (Kersting
and Carman 2006; Soto and Carman 2008). Like PIS1, the
CKI1 and EKI1 genes contain a UASZRE in their promoters
that interact with Zap1 for gene activation (Kersting and
Carman 2006; Soto and Carman 2008). Opi1-mediated reg-
ulation of CKI1 and EKI1 are overcome by their derepression
via Zap1 (Kersting and Carman 2006; Soto and Carman
2008).

Among the genes in lipid metabolism that contain the
UASZRE, DPP1 is the most highly regulated by zinc availabil-
ity (Lyons et al. 2000; Carman and Han 2007; Eide 2009).
The DPP1 gene encodes DGPP phosphatase, an enzyme as-
sociated with the vacuole membrane (Wu et al. 1996; Toke
et al. 1998; Han et al. 2001). This enzyme catalyzes the
removal of the b-phosphate from DGPP, a minor phospho-
lipid in yeast, to form PA, followed by the dephosphoryla-
tion of PA to form DAG (Wu et al. 1996). The zinc-mediated
regulation of DPP1 expression correlates with the metabo-
lism of DGPP and PA in the vacuole membrane (Han et al.
2004). In zinc-replete medium, DGPP and PA account for
0.6 mol% and 1.4 mol% of the total phospholipids in vacu-
ole membranes, but in zinc-depleted medium, the amounts
of DGPP and PA are decreased to an undetectable level and
0.3 mol%, respectively (Han et al. 2004). The function of
DPP1-encoded DGPP phosphatase is still unclear. However,
it is speculated that the enzyme controls the levels of DGPP
and PA in vacuolar membranes, which in turn mediates the
cellular functions occurring in response to zinc depletion
(Carman and Han 2007).

Regulation by phosphorylation

Phosphorylation is a major covalent post-translational modi-
fication by which the activity of an enzyme or a transcription
factor is regulated (Karin and Hunter 1995; Calkhoven and Ab
1996; Hung et al. 1997; Kaffman et al. 1998; Komeili and
O'Shea 1999; Liu et al. 2000). Global analyses of protein
phosphorylation indicate that several enzymes and transport-
ers of glycerolipid metabolism are subject to phosphorylation
(Tables 1–3). Some proteins have many sites of phosphoryla-
tion, whereas others have only a few. It is also telling that
many enzymes and transporters have no sites of phosphory-
lation, and thus the function of these proteins might be regu-
lated by other mechanisms (e.g., substrate availability). The
identity of the protein kinases involved and the physiological
consequences of their phosphorylations have only been deter-
mined for a few proteins in glycerolipid metabolism (Carman
and Han 2011). The protein kinases known to regulate the
function of catalytic and regulatory proteins in glycerolipid
metabolism include AMP-activated protein kinase, protein
kinases A and C, casein kinase II, and cyclin-dependent kinase.
Glycerolipid enzymes known to be bona fide substrates of pro-
tein kinases and regulated by phosphorylation include CTP
synthetase, choline kinase, PS synthase, PA phosphatase,
and TAG lipase. The repressor Opi1 is also regulated by phos-
phorylation. A discussion of these phosphorylations may be
found in a recent review by Carman and Han (2011).

Regulation of PA phosphatase

Pah1 is one of the most highly regulated enzymes in lipid
metabolism. Its activity is governed by several of the bio-
chemical mechanisms discussed above including phosphor-
ylation, enzyme location, and modulation by components of
lipid metabolism. As discussed above, the DAG generated in
the Pah1 reaction is used for the synthesis of TAG (Han et al.
2006) and for the synthesis of PE and PC via the Kennedy
pathway (Carman and Han 2006, 2008). The enzyme also
plays a major role in controlling the cellular concentration of
its substrate PA (Figure 3) (Han et al. 2006), the precursor
of phospholipids that are synthesized via the CDP-DAG path-
way (Carman and Zeimetz 1996; Carman and Henry 1999;
Carman and Han 2008). In addition, the substrate PA plays
a signaling role (see above) in the transcriptional regulation
of phospholipid synthesis genes (Carman and Henry 2007).
pah1D mutants exhibit a .90% reduction in TAG content,
as well as derepression of phospholipid synthesis genes and
massive expansion of the nuclear/ER membrane (Santos-
Rosa et al. 2005; Han et al. 2007). Thus, the regulation of
Pah1 activity governs the synthesis of TAG, the pathways by
which phospholipids are synthesized, PA signaling, and the
growth of the nuclear/ER membrane (Carman and Han
2008). Pah1 is associated with the cytosolic and membrane
fractions of the cell, and its association with the membrane
is peripheral in nature (Han et al. 2006). Chromatin immu-
noprecipitation analysis indicates that Pah1 may also be lo-
calized in the nucleus (Santos-Rosa et al. 2005).
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The association of Pah1 with the membrane where its
substrate PA resides is essential to its function in vivo, and
membrane association is largely governed by the phosphor-
ylation state of the enzyme (Karanasios et al. 2010; Choi
et al. 2011). Phosphorylation favors a cytosolic association,
whereas dephosphorylation favors a membrane association
(Choi et al. 2011). The important sites of phosphorylation
that govern this regulation include the seven Ser/Thr-Pro
targets for CDC28-encoded and PHO85-encoded cyclin-de-
pendent kinases. Pah1 is dephosphorylated by the Nem1-
Spo7 phosphatase complex that is associated with the nu-
clear/ER membrane (Siniossoglou et al. 1998; Santos-Rosa
et al. 2005). In the absence of Nem1-Spo7, wild-type Pah1 is
enriched in the cytosol where it is physiologically inactive,
whereas a nonphosphorylatable mutant of Pah1 with ala-
nine substitutions of Cdc28 and Pho85 target sites is
enriched in the membrane and is physiologically active
(Choi et al. 2011). The requirement of Nem1-Spo7 indicates
that Pah1 is recruited to the membrane for its physiological
function. Indeed, the Nem1-Spo7–dependent membrane lo-
calization of Pah1 is enhanced by elevated levels of PA (Kar-
anasios et al. 2010). Once the enzyme is dephosphorylated,
it anchors onto the nuclear/ER membrane via a short N-
terminal amphipathic helix allowing for the production of
DAG for TAG synthesis (Karanasios et al. 2010).

Under normal physiological conditions (i.e., presence of
the Nem1-Spo7 complex), the level of wild-type Pah1
detected on the membrane is very low. In fact, microscopic
analysis of live S. cerevisiae cells expressing Pah1-GFP show
a cytosolic localization without a detectable fluorescence
signal associated with the nuclear/ER membrane unless
PA levels are elevated (Karanasios et al. 2010). Yet we know
that Pah1 is physiologically active with respect to lipid me-
tabolism throughout cell growth (Han et al. 2006). Purified
Pah1 has a relatively high catalytic efficiency when com-
pared with other enzymes of lipid metabolism (Lin and
Carman 1989), and the lethal phenotype of cells that over-
express Nem1-Spo7 (Santos-Rosa et al. 2005) indicates that
an excess of Pah1 function is detrimental to cell physiology.
Indeed, suppression of this phenotype by overexpression of
Pah1 (Santos-Rosa et al. 2005) led to the discovery of Pah1
function (Han et al. 2007). Thus, under normal physiologi-
cal conditions, the amount of Pah1 associated with mem-
branes must be small for its physiological function to be
controlled, and this regulation must be mediated by the
amount of the Nem1-Spo7 on the membrane. In support
of this hypothesis, the expression level of Nem1 is 10-fold
lower when compared with Pah1 (Ghaemmaghami et al.
2003).

Pah1 activity is also modulated by cytosolic- and mem-
brane-associated factors. The nucleotides ATP and CTP,
which are precursors for the synthesis of phospholipids (Car-
man and Henry 1999), are inhibitors of Pah1 activity (Wu
and Carman 1994). Indeed high levels of ATP favor elevated
PA content and phospholipid synthesis, whereas low levels
of ATP favor reduced PA content and an increase in the

synthesis of TAG (Wu and Carman 1994). As discussed else-
where, elevated CTP content favors an increase in PA con-
tent and derepression of UASINO-containing phospholipid
synthesis genes (Ostrander et al. 1998). The patterns of
regulation of PA phosphatase activity by ATP and by CTP
are consistent with the regulation of lipid synthesis observed
in cells that have fluctuations in ATP and CTP (Wu and
Carman 1994; Ostrander et al. 1998).

Membrane lipids modulate Pah1 activity. For example,
CDP-DAG, PI, and CL enhance activity (Wu and Carman
1996), whereas the sphingoid bases phytosphingosine and
sphinganine inhibit activity (Wu et al. 1993). The major
effect of the lipid activators is to decrease the Km of Pah1
for PA. Sphinganine antagonizes the activation of PA phos-
phatase activity by CL and PI, whereas it causes an increase
in the cooperativity of CL activation (Wu and Carman
1996). Conversely, sphinganine has little effect on the coop-
erativity of PI activation, but causes an increase in the acti-
vation constant for PI (Wu and Carman 1996). On the basis
of the activation/inhibitor constants and cellular concentra-
tions for these lipid effector molecules, their regulatory roles
on Pah1 should be physiologically relevant (Wu et al. 1993;
Wu and Carman 1996).

DAG kinase counteracts PA phosphatase in regulating
PA levels

Dgk1 is a unique CTP-dependent nuclear/ER membrane-as-
sociated enzyme that catalyzes the formation of PA from
DAG (Han et al. 2008a,b). Dgk1 counteracts Pah1 in con-
trolling PA content and consequently, transcriptional regu-
lation of UASINO-containing genes (Han et al. 2008a,b).
DGK1 overexpression causes an increase in PA content, de-
repression of UASINO-containing genes, and abnormal nu-
clear/ER membrane expansion (Han et al. 2008a) like
those that occur in the pah1D mutant (Santos-Rosa et al.
2005; Han et al. 2007). Also consistent with the regulatory
role of PA, DGK1 overexpression suppresses the inositol aux-
otrophy caused by PAH1 overexpression (Han et al. 2008a),
whereas the dgk1D mutation suppresses the phenotypes
caused by the pah1Δ mutation (Han et al. 2008a,b).

Ino2 and Opi2 phenotypes are associated with mutations
affecting many functions

To date, the Ino2 and Opi2 phenotypes of mutants affecting
lipid metabolism, which have been examined in detail for
correlation of changes in lipid metabolism with changes in
INO1 expression, have been consistent with predictions
based on the role of PA as discussed above (Carman and
Henry 2007). However, mutants defective in a wide variety
of other cellular functions have also been reported to have
these phenotypes (Henry and Patton-Vogt 1998) and several
genome-wide screens for mutants with Opi2 or Ino2 pheno-
types have been conducted (Hancock et al. 2006; Young
et al. 2010; Villa-Garciá et al. 2011).

The screen of the Mata viable yeast deletion collection
conducted by Hancock et al. (2006), using the Opi2 plate
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test, as well as an INO1-LacZ reporter construct, identified
89 Opi2 mutants. Among these mutants were opi1, cho2,
opi3, ume6, rpd3, sin3, and reg1, which had previously been
shown to affect INO1 expression (Henry and Patton-Vogt
1998; Shirra and Arndt 1999; Ouyang et al. 1999; Elkhaimi
et al. 2000). Hancock et al. (2006) also reported Opi2 phe-
notypes for the first time in mutants affecting functions such
as the NuA4 histone acetyl transferase, vacuolar protein
sorting, and other aspects of membrane trafficking and the
UPR.

Young et al. (2010) identified 231 mutants from the
yeast haploid deletion collection that showed measurable
growth reduction at 37�, when grown in medium lacking
inositol. The major focus of this study was on the discovery
of pH sensitive Ino2 phenotypes associated with mutants
defective in all of the subunits of the vacuolar adenosine
triphosphatase (V-ATPase) complex, as well as factors in
the ER responsible for the assembly of this complex. The
pma1-007 mutant, defective in the essential P-type ATPase
of the plasma membrane, which regulates cellular pH, was
also found to have an Ino2 phenotype, as was trk1Δ, de-
fective in a K+ transporter that activates Pma1. The Ino2

phenotypes of these mutants were observed at pH 3 but
were suppressed at pH 4 and 5 and this pH sensitivity was
attributed to pH dependence of binding of Opi1 to PA. The
binding of PA to Spo20, a yeast SNARE (Nakanishi et al.
2004), was also shown to be pH sensitive, suggesting that
binding of proteins to PA is affected by cellular pH.
Changes in the ionization state of PA affect binding of
Opi1 to PA in vitro, supporting the electrostatic/hydrogen
bond switch model of Kooijman et al. (2007) for interac-
tion of proteins with PA. Repression of INO1 in response to
glucose starvation also correlates to cellular pH, but not to
PA levels. Young et al. (2010) have concluded that the
Reg1-mediated mechanism that regulates INO1 expression
via the glucose response pathway (Ouyang et al. 1999;
Shirra and Arndt 1999) is most likely not dependent on
the absolute level of PA, but rather on the effect of pH
on the ionization state of PA.

The screen for Ino2 mutants of the diploid viable yeast
deletion collection conducted by Villa-Garciá et al. (2011)
has resulted in the identification of 419 genes, which when
deleted confer the Ino2 phenotype under one or more growth
conditions. This screen involves comparing growth in the
presence and absence of inositol at two growth temperatures,
30� and 37�, in the presence and absence of choline. Choline
sensitive Ino2 phenotypes and the strengthening of weak
Ino2 phenotypes by choline are potentially attributable to
reduction in PA levels due to the consumption of DAG pro-
duced from PA when PC is synthesized via the Kennedy path-
way (see above) using exogenous choline (Carman and
Henry 2007). Growth temperature has also been shown to
influence lipid metabolism in wild-type and mutant strains.
Growth at 37� results in an increased rate of synthesis of PI in
wild-type cells growing in the presence of inositol (Gaspar
et al. 2008), as well as an increase in PC synthesis and turn-

over (Dowd et al. 2001). Among the gene ontology (GO)
categories enriched among the Ino2 mutants identified by
Villa-Garciá et al. (2011) are: response to stress, protein mod-
ification, chromosome organization, response to chemical
stimulus, cellular carbohydrate metabolism, psuedohyphal
growth, and transcription. Mutants in the category response
to stress include a number with defects in stress response
pathways that had previously been reported to be associated
with Ino2 phenotypes, including the protein kinase C-cell
wall integrity (PKC-CWI) (Nunez et al. 2008; Jesch et al.
2010), the UPR (Cox et al. 1997; Chang et al. 2002) and
the glucose response pathway (Shirra et al. 2001, 2005).
However, Ino2 phenotypes have also been observed in
mutants affecting signaling pathways not previously reported
to be associated with such phenotypes including: target of
rapamycin (TOR), high osmolarity glycerol (HOG), cAMP-de-
pendent protein kinase, calcineurin and filamentous growth
and cell cycle regulation (Villa-Garciá et al. 2011).

Causes of Ino2 phenotypes

It is often assumed that an Ino2 phenotype provides evidence
that a mutant has impaired INO1 expression or, alternatively,
that a signaling pathway and/or a transcription factor defec-
tive in the mutant in question, is directly involved in regulat-
ing INO1 transcription. For example, the Ino2 phenotypes of
the ire1Δ and hac1Δ mutants, defective in UPR activation,
have been attributed to a role for the Hac1 transcription fac-
tor in activating expression of INO1 (Cox et al. 1997). The
evidence for this interpretation includes the observations that
ire1Δ and hac1Δ mutants fail to sustain expression of INO1
when shifted to medium lacking inositol and that the opi1Δ
mutation supresseses their Ino2 phenotypes (Cox et al.
1997). Cox et al. (1997) also reported that growth in the
absence of inositol activates the UPR in wild-type cells and
that INO1 expression is activated in wild-type cells treated
with tunicamycin in the presence of normally repressing lev-
els of inositol. However, activation of INO1 expression in re-
sponse to tunicamycin in the presence of inositol was not
observed by Chang et al. (2002) and INO1 is repressed with
normal kinetics in response to addition of inositol in cells in
which the UPR was constitutively induced by constitutive
expression of activated Hac1 (Jesch et al. 2006). The reasons
for these divergent results with respect to the role of Hac1 in
INO1 transcription are not clear.

A number of mutants in the PKC-CWI pathway have Ino2

phenotypes that are intensified at 37� and in the presence of
choline (Nunez et al. 2008; Fernandez-Murray et al. 2009;
Jesch et al. 2010; Villa-Garciá et al. 2011). Futhermore, the
Ino2 phenotypes of these mutants are suppressed by opi1Δ.
It is clear, however, that the PKC pathway has no direct role
in regulating INO1 expression. The PKC pathway mutant,
slt2Δ/mpk1Δ, exhibits normal INO1 derepression in re-
sponse to a shift to inositol medium even when choline is
present at 37�, a condition under which growth ceases and
the mutant begins to lose viability within 4–5 hr (Nunez
et al. 2008). The stt4ts and mss4ts mutants, defective in the
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PI kinases that are responsible for producing the PI 4-P and
PI 4,5-P2 pools on the plasma membrane and are essential
for PKC-CWI signaling during heat stress (Audhya and Emr
2002; Audhya and Emr 2003), also exhibit Ino2 phenotypes
at semipermissive growth temperatures (Jesch et al. 2010).
However, INO1 undergoes normal derepression immediately
following a shift to medium lacking inositol in the stt4ts and
mss4ts mutants, even at the temperature at which they ex-
hibit an Ino2 phenotype (Jesch et al. 2010). Significantly,
the PKC-CWI pathway is activated in wild-type cells grown
in the absence of inositol (Nunez et al. 2008) in response to
reduction in synthesis of inositol-containing sphingolipids
(Jesch et al. 2010). Thus, it is clear that the Ino2 phenotypes
of PKC-CWI mutants are not attributable to a defect in INO1
expression, but rather to failure to mount a stress response
that is essential for survival of stress caused by growth in the
absence of inositol (Nunez et al. 2008; Jesch et al. 2010;
Villa et al. 2011).

Supression of an Ino2 phenotype by opi1Δ is also often
cited as evidence that the mutant in question is defective in
a functon that regulates INO1. However, the opi1Δ mutation
also suppresses the Ino2 phenotypes of slt2Δ and other PKC
pathway mutants (Nunez et al. 2008), which, as discussed
above, are not attributable to failure to express INO1. The
explanation for this observation lies in the fact that the
opi1Δ mutation does not simply restore INO1 expression to
the level seen in wild-type cells growing in the absence of
inositol. Instead, the deletion of the OPI1 gene completely
eliminates the ability of the cell sense inositol, whether en-
dogenously produced or exogenously supplied, leading ex-
pression of INO1 at levels as high as 5- to 6-fold higher than
normal derepressed levels (Bachhwat et al. 1995). As a con-
sequence of the resulting overproduction of inositol, opi1
cells have levels of PI and other lipids resembling the lipid
composition of wild-type cells grown in the presence of high
levels of exogenous inositol (Klig et al. 1985). Indeed, opi1Δ
mutants excrete so much inositol that they support growth
of any Ino2 mutant in their vicinity, the characteristic used
in the original bioassay used in the isolation of Opi2 mutants
(Greenberg et al. 1982a). Microarray experiments showed
that, in contrast to wild-type cells, opi1Δ cells do not exhibit
activation of UPR target genes when grown in the absence of
inositol (Jesch et al. 2005). This is presumably due to the
fact that overexpression of the INO1 gene in opi1Δ cells
produces sufficient inositol to repress expression of all genes
that are normally activated in absence of inositol, except of
course the UASINO-containing genes, which are directly de-
pendent on Opi1p for repression in the presence of inositol
(Jesch and Henry 2005). Thus, suppression by opi1Δ of an
Ino2 phenotype conferred by mutation of a given gene does
not consitute sufficient evidence on its own that the gene
product in question is involved in regulation of INO1.

Microarray studies have revealed that the transcript
levels of hundreds of genes in yeast are affected by the
availability of inositol and/or inositol plus choline in the
medium (Santiago and Mamoun 2003; Jesch et al. 2005,

2006; Nunez et al. 2008). Most of these “inositol-regulated”
genes are not under the control of Opi1 and/or involved in
lipid metabolism and a number of these genes are known
targets of the stress response pathways that are associated
with Ino2 phenotypes, including the UPR and PKC pathways
(Jesch et al. 2005, 2006; Nunez et al. 2008; Jesch et al.
2010; Villa et al. 2011). As discussed above, expression of
INO1 at the level observed in wild-type cells growing in the
absence of inositol does not suffice to support the rate of PI
synthesis observed in the same cells growing in the presence
of exogenous inositol (Kelley et al. 1988; Gaspar et al.
2006). Moreover, in wild-type cells, the changes in lipid
metabolism that occur in response to removal of inositol
and/or its resupply have been shown to affect signaling
associated with PA (Loewen et al. 2004; Young et al.
2010), and with inositol containing sphingolipids and the
pools of PI 4-P and PI 4,5-P2 in the plasma membrane (Jesch
et al. 2010).

As the exploration of the regulation and cell biology of
lipid metabolism in yeast accelerates in response to genomic
approaches, additional examples of lipid-mediated signaling
influenced by the availability of lipid precursors are likely to
be discovered. A major advantage of yeast in such studies is
the fact, as described in this YeastBook chapter, that its lipid
metabolism can readily be manipulated by changing the
supply of exogenous precursors and/or by introducing
mutations affecting specific steps in lipid metabolism.

Perspectives

Monumental advancements have been made in determining
gene enzyme relationships and elucidating the fundamental
biochemistry, regulatory mechanisms, and cellular roles of
lipids in the 20 years since the publication of the last edition
of the Molecular Biology of the Yeast Saccharomyces: Gene
Expression in 1992. Yet while the identities of many of the
genes encoding enzymes, transporters, and regulatory fac-
tors controlling lipid metabolism in yeast have been discov-
ered, described, and analyzed, there remain many gaps in
our knowledge. The functions of many genes, genome-wide,
have yet to be clarified and among them are certainly a con-
siderable number of “missing links” in yeast lipid metabo-
lism and its regulation. For example, the molecular
organization of lipid biosynthetic pathways that ensures
metabolic channeling of critical compounds, enzyme topol-
ogy, and the integration of soluble and membrane-bound
intermediates in these pathways is only beginning to be
addressed. Furthermore, we do not have complete knowl-
edge of the mechanisms by which lipids synthesized in one
compartment are trafficked to other locations within the cell
or the mechanisms by which the precise lipid compositions
of specific membrane compartments are established and
maintained. High-resolution lipidomic analyses that have
uncovered some 100 different molecular species of glycero-
and sphingolipids have added another level of complexity to
this question. Moreover, our understanding of the regulatory
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networks that link lipid metabolism to other aspects of cell
biology and metabolism, including energy metabolism,
membrane biogenesis, and trafficking, signaling, and cell
division, remains limited. However, the increasing availabil-
ity of archived genetic and biochemical data on a wide va-
riety of eukaryotic organisms and the extensive homologies
that exist among eukaryotes are opening new avenues for
pursuing these important challenges. Due to its genetic trac-
tability and comparably “simple” lipid complement, yeast
continues to be among the most attractive and important
model systems for such research.
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