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Sphingosine was named by J. L. W. Thudichum for its enig-
matic properties. This descriptor has applied to sphingolipids
for over a century because new enigmas continue to surface.
This JBC minireview series presents articles about three novel
subspecies of sphingolipids, �-galactosylceramides, 4,5-dihy-
droceramides, and 1-deoxysphingolipids, that have important
activities but, until recently, remained undetected (or at least
understudied) in the shadow of very closely related compounds.
They also serve as a reminder that important metabolites still lie
“off the radar screen” in reports of global and comprehensive
metabolomic profiling.

Sphingolipids are one of the eight major categories of lipids
(1) and are defined by the presence of a sphingoid base back-
bone (2, 3), with sphingosine (Fig. 1) displayed most frequently.
The backbone is usually derivatized with an amide-linked fatty
acid and/or a headgroup attached to the hydroxyl on carbon 1,
as also depicted in Fig. 1 (4).

These compounds have long been considered to be enigmas
(mysterious and puzzling riddles) beginning with the initial
naming of “sphingosin” in the 1880s by J. L. W. Thudichum (5).
However, a substantial number of mysteries have been clarified
over the past several decades as much has been learned about
their structures and biophysical properties (6 – 8), biosynthesis
and turnover (4, 9 –11), interactions with proteins (12–14), and
roles in cell-cell communication and signaling (13, 15–17). So
have all the enigmas been solved?

This minireview series illustrates how subtle structural fea-
tures of sphingolipids still have the capacity to surprise. The
articles describe findings with naturally occurring deviations
from three “hallmarks” of mammalian sphingolipid structure:
the �-glycosidic linkage of the first carbohydrate attached to
ceramide, the 4,5-double bond of the sphingoid base, and the
hydroxyl on carbon 1 of the sphingoid base (Fig. 1).

The first minireview in the series, “The alpha and omega of
galactosylceramides in T cell immune function” by Birkholz et
al. (18), describes a monohexosylceramide that differs from the
predominant glycosphingolipids made by mammals in having
an �-linked rather than the �-linked sugar shown in the fig-
ure. A subset of T lymphocytes called natural killer T cells

(NKT cells)2 recognizes glycolipids, predominantly �-linked
glycosphingolipids, when they are bound to the cell surface pro-
tein CD1d. By activating NKT cells, synthetic �-linked glyco-
sphingolipids can have profound effects on T cell immune
responses. Structure-function studies have found fascinating
contributions from the lipid backbone (19), and clinical trials of
some of these derivative compounds as vaccine adjuvants are
planned. Similar compounds are found in soil bacteria, and an
interesting recent discovery has been that �-galactosylcer-
amides are produced by Bacteroides fragilis, a prominent mem-
ber of the human gut microflora (20). This expands the possible
impact of these compounds beyond just their pharmaceutical
(and basic research) applications into their possible roles in
affecting gastrointestinal immune function and the complex
relationship of the host with the microbiome. Self-glycosphin-
golipids with �-linked sugars are much weaker antigens, but
they can also stimulate NKT cells. Recent work suggests, how-
ever, that mammalian cells may also produce small amounts of
�-linked glycosphingolipids, and these may contribute to the
tightly regulated but essential self-reactivity of NKT cells.

The second minireview, “Dihydroceramides: from bit players
to lead actors” by Siddique et al. (21), discusses intermediates of
de novo sphingolipid biosynthesis that do not have the 4,5-dou-
ble bond of sphingosine (Fig. 1). Until recently, they were
thought to be essentially inert (indeed, they were added to cells
as controls for studies of the bioactivity of ceramides), but
advanced detection techniques that facilitated the resolution of
ceramides and dihydroceramides led to the surprising finding
that drug effects previously attributed to ceramides were in fact
driven by the dihydroceramides (22). Indeed, experimental
inhibition (23) or depletion (24) of the desaturase that converts
dihydroceramides to ceramides in mammalian cells revealed
distinct and non-overlapping functions of these endogenous
sphingolipids. Independent roles for dihydroceramides are
emerging as players in autophagy, hypoxia, and metabolic con-
trol, and they have been implicated in the etiology or treatment
of diabetes, cancer, and neurodegenerative diseases (24).

The third minireview, “1-Deoxysphingolipids encountered
exogenously and made de novo: dangerous mysteries inside an
enigma” by Duan and Merrill (25), describes a subcategory of
sphingoid bases that lack the hydroxyl group on the first carbon
(Fig. 1). These types of compounds were known to be produced
by fungi and other organisms (3), and to be of health interest as
mycotoxins (26) and as potential anticancer compounds that* The authors declare that they have no conflicts of interest with the contents
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surfaced in screens of aquatic organisms (27). Thus, it was sur-
prising to learn that mammals can also make 1-deoxy-sphingo-
lipids (28) because wild-type serine palmitoyltransferase can
accommodate L-alanine in addition to L-serine, and further-
more, that mutations that increase L-alanine utilization and
1-deoxysphingolipid production cause sensory neuropathies
(29, 30). Elevations in these bioactive compounds have also
been found in diabetes (31), non-alcoholic steatohepatitis (32),
and when serine biosynthesis is defective (33), and can be envi-
sioned for other conditions where metabolic changes or diet
alter the amounts.

The findings with these novel compounds illustrate that our
understanding of structure and function for sphingolipids is
still in its infancy. This should be kept in mind when interpret-
ing claims of “global” and “comprehensive” profiling of the
metabolome because most of the bioactive sphingolipids,
including ones yet to be discovered, still lie “off the radar
screen” of such analyses.
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