Present - 2015
Stukey, G. J., G.-S. Han, and G. M. Carman 2024. Architecture and function of yeast phosphatidate phosphatase Pah1 domains/regions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1869: 159547. Reprint
Khondker, S., G.-S. Han, and G. M. Carman 2024. Protein kinase Hsl1 phosphorylates Pah1 to inhibit phosphatidate phosphatase activity and regulate lipid synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 300: 107572. Reprint
Jog, R., G.-S. Han, and G. M. Carman 2024. The Saccharomyces cerevisiae Spo7 basic tail is required for Nem1-Spo7/Pah1 phosphatase cascade function in lipid synthesis. J. Biol. Chem. 300: 105587. Reprint
Han, G.-S., J. M. Kwiatek, K. S. Hu, and G. M. Carman 2024. Catalytic core function of yeast Pah1 phosphatidate phosphatase reveals structural insight into its membrane localization and activity control. J. Biol. Chem. 300: 105560. Reprint
Stukey, G. J., G.-S. Han, and G. M. Carman 2023. Phosphatidate phosphatase Pah1 contains a novel RP domain that regulates its phosphorylation and function in yeast lipid synthesis. J. Biol. Chem. 299: 105025. Reprint
Dhakephalkar, T., Stukey, G., Guan, Z., Carman, G. M., and Klein, E. A. 2023. Characterization of an evolutionarily distinct bacterial ceramide kinase from Caulobacter crescentus. J. Biol. Chem. 299: 104894. Reprint
Jog, R., Han, G.-S., and Carman, G. M. 2023. Conserved regions of the regulatory subunit Spo7 are required for Nem1-Spo7/Pah1 phosphatase cascade function in yeast lipid synthesis. J. Biol. Chem. 299: 104683. Reprint
Kwiatek, J. M., B. Gutierrez, E. C. Izgu, G.-S. Han, and G. M. Carman 2022. Phosphatidic acid mediates the Nem1-Spo7/Pah1 phosphatase cascade in yeast lipid synthesis. J. Lipid Res. 63: 100282. Reprint
Pokharel, M., P. Konarzewska, J. Y. Roberge, G.-S. Han, Y. Wang, G. M. Carman, and C. Xue 2022. The anticancer drug bleomycin shows potent antifungal activity by altering phospholipid biosynthesis. Microbiol. Spectr. 10: e0086222. Reprint
Khondker, S., J. M. Kwiatek, G.-S. Han, and G. M. Carman 2022. Glycogen synthase kinase homolog Rim11 regulates lipid synthesis through the phosphorylation of Pah1 phosphatidate phosphatase in yeast. J. Biol. Chem. 298: 102221. Reprint
Park, Y., G. J. Stukey, R. Jog, J. M. Kwiatek, G.-S. Han, and G. M. Carman 2022. Mutant phosphatidate phosphatase Pah1-W637A exhibits altered phosphorylation, membrane association, and enzyme function in yeast. J. Biol. Chem. 298: 101578. Reprint
Khondker, S., G-S. Han, and G. M. Carman. 2022. Phosphorylation-mediated regulation of the Nem1-Spo7/Pah1 phosphatase cascade in yeast lipid synthesis. Adv. Biol. Regul. 84: 100889. Reprint
Carman, G. M. 2021. Lipid metabolism has been good to me. J. Biol. Chem. 297: 100786. Reprint
Dey, P., G.-S. Han, and G. M. Carman. 2020. A review of phosphatidate phosphatase assays. J. Lipid Res. 61: 1556-1564. Reprint
Kwiatek, J. M., G.-S. Han, and G. M. Carman 2020. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1865: 158434. Reprint
Mirheydari, M., P. Dey, G. J. Stukey, Y. Park, G.-S. Han, G. M. Carman. 2020. The Spo7 sequence LLI is required for Nem1-Spo7/Pah1 phosphatase cascade function in yeast lipid metabolism. J. Biol. Chem. 295: 11473-11485. Reprint
Kwiatek, J. M., G. M. Carman. 2020. Yeast phosphatidic acid phosphatase Pah1 hops and scoots along the membrane phospholipid bilayer. J. Lipid Res. 61: 1232-1243. Reprint
Hassaninasab, A., L. S. Hsieh, W. M. Su, G.-S. Han, and G. M. Carman 2019. Yck1 casein kinase I regulates the activity and phosphorylation of Pah1 phosphatidate phosphatase from Saccharomyces cerevisiae. J. Biol. Chem. 294: 18256-18268. Reprint
Dey, P., W. M. Su, M. Mirheydari, G. S. Han, and G. M. Carman 2019. Protein kinase C mediates the phosphorylation of the Nem1-Spo7 protein phosphatase complex in yeast. J. Biol. Chem. 294: 15997-16009. Reprint
Hennessy, M., M. E. Granade, A. Hassaninasab, D. Wang, J. M. Kwiatek, G.-S. Han, T. E. Harris, and G. M. Carman. 2019. Casein kinase II-mediated phosphorylation of lipin 1beta phosphatidate phosphatase at Ser-285 and Ser-287 regulates its interaction with 14-3-3beta protein. J. Biol. Chem. 294: 2365-2374. Reprint
Konarzewska, P., Y. Wang, G.-S. Han, K. J. Goh, Y. G. Gao, G. M. Carman, and C. Xue. 2019. Phosphatidylserine synthesis is essential for viability in the human fungal pathogen Cryptococcus neoformans. J. Biol. Chem. 294: 2329-2339. Reprint
Carman, G. M. 2019. Discoveries of the phosphatidate phosphatase genes in yeast published in the Journal of Biological Chemistry. J. Biol. Chem. 294: 1681-1689. Reprint
Carman, G. M. and G.-S. Han. 2019. Fat-regulating phosphatidic acid phosphatase: a review of its roles and regulation in lipid homeostasis. J. Lipid Res. 60: 2-6. Reprint
Bankaitis, V. A. and G. M. Carman 2019. The role of phosphoinositides in signaling and disease: introduction to the thematic review series. J. Lipid Res. 60, 227-228 Reprint
Su, W.-M., G.-S. Han, P. Dey, and G. M. Carman. 2018. Protein kinase A phosphorylates the Nem1-Spo7 protein phosphatase complex that regulates the phosphorylation state of the phosphatidate phosphatase Pah1 in yeast. J. Biol. Chem.293: 15801-15814. Reprint
Zhang, Z., G. He, G.-S. Han, J. Zhang, N. Catanzaro, A. Diaz, Z. Wu, G. M. Carman, L. Xie, and X. Wang 2018. Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis. PLoS. Pathog. 14: e1006988 Reprint
Carman, G. M. and G.-S. Han 2018. Phosphatidate phosphatase regulates membrane phospholipid synthesis via phosphatidylserine synthase. Adv. Biol. Regul. 67: 49-58. Reprint
Hayes, M., V. Choudhary, N. Ojha, J. J. Shin, G.-S. Han, G. M. Carman, C. J. Loewen, W. A. Prinz, and T. Levine 2017. Fat storage-inducing transmembrane (FIT or FITM) proteins are related to lipid phosphatase/phosphotransferase enzymes. Microb.Cell 5: 88-103. Reprint
Park, Y., G.-S. Han, and G. M. Carman 2017. A conserved tryptophan within the WRDPLVDID domain of yeast Pah1 phosphatidate phosphatase is required for its in vivo function in lipid metabolism. J. Biol. Chem. 292: 19580-19589. Reprint
Han, G.-S., and G. M. Carman. 2017. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis. J. Biol.Chem. 292: 13230-13242. Reprint
Hassaninasab, A., G.-S. Han, and G. M. Carman. 2017. Tips on the analysis of phosphatidic acid by the fluorometric coupled enzyme assay. Anal. Biochem. 526: 69-70. Reprint
Dey, P., W.-M. Su, G.-S. Han, and G. M. Carman. 2017. Phosphorylation of lipid metabolic enzymes by protein kinase C requires phosphatidylserine and diacylglycerol. J. Lipid Res. 58:742-751. Reprint
Qiu, Y., A. Hassaninasab, G.-S. Han, and G. M. Carman 2016. Phosphorylation of Dgk1 diacylglycerol kinase by casein kinase II regulates phosphatidic acid production in Saccharomyces cerevisiae. J. Biol. Chem. 291: 26455-26467. Reprint
Temprano, A., H. Sembongi, G. S. Han, D. Sebastian, J. Capellades, C. Moreno, J. Guardiola, M. Wabitsch, C. Richart, O. Yanes, A. Zorzano, G. M. Carman, S. Siniossoglou, and M. Miranda. 2016. Redundant roles of the phosphatidate phosphatase family in triacylglycerol synthesis in human adipocytes. Diabetologia 59: 1985-1994. Reprint
Hsieh, L.-S., W.-M. Su, G.-S. Han, and G.M. Carman. 2016. Phosphorylation of yeast Pah1 phosphatidate phosphatase by casein kinase II regulates its function in lipid metabolism. J. Biol. Chem. 291: 9974-9990. Reprint
Barneda D., J. Planas-Iglesias, M. L. Gaspar, D. Mohammadyani, S. Prasannan, D. Dormann, G. S. Han, S. A. Jesch, G.M. Carman, V. Kagan, M. G. Parker, N. T. Ktistakis, J. Klein-Seetharaman, A. M. Dixon, S. A. Henry, and M. Christian. 2015. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. Elife. DOI: 10.7554/eLife.07485. Reprint
Park Y., G.-S. Han, E. Mileykovskaya, T. A. Garrett, G. M. Carman. 2015. Altered lipid synthesis by lack of yeast Pah1 phosphatidate phosphatase reduces chronological life span. J. Biol. Chem. 290: 25382-25394. Reprint
Barbosa A. D., H. Sembongi, W. M. Su, S. Abreu, F. Reggiori, G. M. Carman, and S. Siniossoglou. 2015. Lipid partitioning at the nuclear envelope controls membrane biogenesis. Mol. Biol. Cell 26: 3641-3657. Reprint
Hsieh L.-S., W.-M. Su, G.-S. Han, G. M. Carman. 2015. Phosphorylation regulates the ubiquitin-independent degradation of yeast Pah1 phosphatidate phosphatase by the 20S proteasome. J. Biol. Chem. 290: 11467-78. Reprint
Sahu-Osen, A., G. Montero-Moran, M. Schittmayer, K. Fritz, A. Dinh, Y.-F. Chang, D. McMahon, A. Boeszoermenyi, I. Cornaciu, D. Russell, M. Oberer, G. M. Carman, R. Birner-Gruenberger, and D. L. Brasaemle. 2015. CGI-58/ABHD5 is phosphorylated on Ser-239 by protein kinase A: Control of subcellular localization. J. Lipid Res. 56: 109-121. Reprint
Merrill, A.H., Jr., and G. M. Carman. 2015. Introduction to thematic minireview series: novel bioactive sphingolipids. J. Biol. Chem. 290: 15362-15364. Reprint