Skip Navigation

Department of Food Science


Carman Lab Publications

PubMed Link

Present - 2015

Mirheydari, M., P. Dey, G. J. Stukey, Y. Park, G. S. Han, G. M. Carman. 2020. The Spo7 sequence LLI is required for Nem1-Spo7/Pah1 phosphatase cascade function in yeast lipid metabolism. J. Biol. Chem. 295: 11473-11485. Reprint

Kwiatek, J. M., G. M. Carman. 2020. Yeast phosphatidic acid phosphatase Pah1 hops and scoots along the membrane phospholipid bilayer. J. Lipid Res. 61: 1232-1243. Reprint

Hassaninasab, A., L. S. Hsieh, W. M. Su, G. S. Han, and G. M. Carman 2019. Yck1 casein kinase I regulates the activity and phosphorylation of Pah1 phosphatidate phosphatase from Saccharomyces cerevisiae. J. Biol. Chem. 294: 18256-18268. Reprint

Dey, P., W. M. Su, M. Mirheydari, G. S. Han, and G. M. Carman 2019. Protein kinase C mediates the phosphorylation of the Nem1-Spo7 protein phosphatase complex in yeast. J. Biol. Chem. 294: 15997-16009. Reprint

Hennessy, M., M. E. Granade, A. Hassaninasab, D. Wang, J. M. Kwiatek, G.-S. Han, T. E. Harris, and G. M. Carman. 2019. Casein kinase II-mediated phosphorylation of lipin 1beta phosphatidate phosphatase at Ser-285 and Ser-287 regulates its interaction with 14-3-3beta protein. J. Biol. Chem. 294: 2365-2374. Reprint

Konarzewska, P., Y. Wang, G.-S. Han, K. J. Goh, Y. G. Gao, G. M. Carman, and C. Xue. 2019. Phosphatidylserine synthesis is essential for viability in the human fungal pathogen Cryptococcus neoformans. J. Biol. Chem. 294: 2329-2339. Reprint

Su, W.-M., G.-S. Han, P. Dey, and G. M. Carman.  2018.  Protein kinase A phosphorylates the Nem1-Spo7 protein phosphatase complex that regulates the phosphorylation state of the phosphatidate phosphatase Pah1 in yeast. J. Biol. Chem.293: 15801-15814. Reprint

Zhang, Z., G. He, G.-S. Han, J. Zhang, N. Catanzaro, A. Diaz, Z. Wu, G. M. Carman, L. Xie, and X. Wang 2018.  Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis. PLoS. Pathog. 14: e1006988 Reprint

Hayes, M., V. Choudhary, N. Ojha, J. J. Shin, G. S. Han, G. M. Carman, C. J. Loewen, W. A. Prinz, and T. Levine 2017.  Fat storage-inducing transmembrane (FIT or FITM) proteins are related to lipid phosphatase/phosphotransferase enzymes. Microb.Cell 5: 88-103. Reprint

Park, Y., G. S. Han, and G. M. Carman 2017.  A conserved tryptophan within the WRDPLVDID domain of yeast Pah1 phosphatidate phosphatase is required for its in vivo function in lipid metabolism. J. Biol. Chem. 292: 19580-19589. Reprint

Han, G.-S., and G. M. Carman.  2017.  Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis. J. Biol.Chem. 292: 13230-13242. Reprint

Hassaninasab, A., G.-S. Han, and G. M. Carman.  2017.  Tips on the analysis of phosphatidic acid by the fluorometric coupled enzyme assay.  Anal. Biochem.  526: 69-70.  Reprint

Dey, P., W.-M. Su, G.-S. Han, and G. M. Carman.  2017.  Phosphorylation of lipid metabolic enzymes by protein kinase C requires phosphatidylserine and diacylglycerol.  J. Lipid Res. 58:742-751. Reprint

Qiu, Y., A. Hassaninasab, G.-S. Han, and G. M. Carman 2016.  Phosphorylation of Dgk1 diacylglycerol kinase by casein kinase II regulates phosphatidic acid production in Saccharomyces cerevisiae. J. Biol. Chem. 291: 26455-26467. Reprint

Temprano, A., H. Sembongi, G. S. Han, D. Sebastian, J. Capellades, C. Moreno, J. Guardiola, M. Wabitsch, C. Richart, O. Yanes, A. Zorzano, G. M. Carman, S. Siniossoglou, and M. Miranda. 2016.  Redundant roles of the phosphatidate phosphatase family in triacylglycerol synthesis in human adipocytes. Diabetologia 59: 1985-1994. Reprint

Hsieh, L.-S., W.-M. Su, G.-S. Han, and G.M. Carman. 2016.  Phosphorylation of yeast Pah1 phosphatidate phosphatase by casein kinase II regulates its function in lipid metabolism. J. Biol. Chem. 291: 9974-9990. Reprint

Barneda D., J. Planas-Iglesias, M. L. Gaspar, D. Mohammadyani, S. Prasannan, D. Dormann, G. S. Han, S. A. Jesch, G.M. Carman, V. Kagan, M. G. Parker, N. T. Ktistakis, J. Klein-Seetharaman, A. M. Dixon, S. A. Henry, and M. Christian. 2015. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. Elife. DOI: 10.7554/eLife.07485. Reprint

Park Y., G. S. Han, E. Mileykovskaya, T. A. Garrett, G. M. Carman. 2015. Altered lipid synthesis by lack of yeast Pah1 phosphatidate phosphatase reduces chronological life span. J. Biol. Chem. 290: 25382-25394. Reprint

Barbosa A. D., H. Sembongi, W. M. Su, S. Abreu, F. Reggiori, G. M. Carman, and S. Siniossoglou. 2015. Lipid partitioning at the nuclear envelope controls membrane biogenesis. Mol. Biol. Cell 26: 3641-3657. Reprint

Hsieh L.-S., W.-M. Su, G.-S. Han, G. M. Carman. 2015. Phosphorylation regulates the ubiquitin-independent degradation of yeast Pah1 phosphatidate phosphatase by the 20S proteasome. J. Biol. Chem. 290: 11467-78. Reprint

Sahu-Osen, A., G. Montero-Moran, M. Schittmayer, K. Fritz, A. Dinh, Y.-F. Chang, D. McMahon, A. Boeszoermenyi, I. Cornaciu, D. Russell, M. Oberer, G. M. Carman, R. Birner-Gruenberger, and D. L. Brasaemle. 2015. CGI-58/ABHD5 is phosphorylated on Ser-239 by protein kinase A: Control of subcellular localization. J. Lipid Res. 56: 109-121. Reprint


Carman, G. M. 2021. Lipid metabolism has been good to me. J. Biol. Chem. 297: 100786. Reprint

Dey, P., G.-S. Han, and G. M. Carman.  2020.  A review of phosphatidate phosphatase assays.  J. Lipid Res. 61: 1556-1564. Reprint

Kwiatek, J. M., G. S. Han, and G. M. Carman 2020. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1865: 158434. Reprint

Carman, G. M. 2019. Discoveries of the phosphatidate phosphatase genes in yeast published in the Journal of Biological Chemistry. J. Biol. Chem. 294: 1681-1689. Reprint

Carman, G. M. and G. S. Han.  2019.  Fat-regulating phosphatidic acid phosphatase: a review of its roles and regulation in lipid homeostasis. J. Lipid Res. 60: 2-6. Reprint

Bankaitis, V. A. and G. M. Carman 2019. The role of phosphoinositides in signaling and disease: introduction to the thematic review series. J. Lipid Res. 60, 227-228 Reprint

Carman, G. M. and G. S. Han 2018.  Phosphatidate phosphatase regulates membrane phospholipid synthesis via phosphatidylserine synthase. Adv. Biol. Regul. 67: 49-58. Reprint

Merrill, A.H., Jr., and G. M. Carman. 2015.  Introduction to thematic minireview series: novel bioactive sphingolipids.  J. Biol. Chem. 290: 15362-15364.Reprint

Gomez-Cambronero, J. and G. M. Carman 2014.  Thematic minireview series on phospholipase D and cancer. J.Biol.Chem. 289: 22554-22556.Reprint

Pascual, F. and G. M. Carman. 2013. Phosphatidate phosphatase, a key regulator of lipid homeostasis.Biochim. Biophys. Acta.1831: 514-522. Reprint

Carman, G. M. 2012. An unusual phosphatidylethanolamine-utilizing cardiolipin synthase is discovered in bacteria. Proc. Natl. Acad. Sci. U. S. A 109:16402-16403.Reprint

Henry, S.A., S.D. Kohlwein, and G.M. Carman.  2012.  Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae.  Genetics 190: 317-349. Reprint

Carman, G. M. 2012.  Thematic minireview series on the lipid droplet, a dynamic organelle of biomedical and commercial importance. J. Biol. Chem. 287: 2272. Reprint

Carman, G.M., and G.-S. Han.  2011.  Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae.  Ann. Rev. Biochem.80: 859-883. Reprint

Carman, G.M. 2011.  The discovery of the fat-regulating phosphatidic acid phosphatase gene.  Front. Biol. 6: 172-176. Reprint

Carman, G.M., and G.-S. Han.  2009.  Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis.  J. Biol. Chem. 284: 2593-2597. Reprint

Carman, G.M., and G.-S. Han.  2009.  Regulation of phospholipid synthesis in yeast.  J. Lipid Res. 50: S69-S73. Reprint

Chang, Y.-F., and G.M. Carman.  2008.  CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae.  Prog. Lipid Res. 47: 333-339. Reprint

Carman, G.M., and S.A. Henry.  2007.  Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiaeJ. Biol. Chem. 282: 37293-37297. Reprint

Carman, G.M., and G.-S. Han.  2007.  Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion.  Biochim. Biophys. Acta. 1771: 322-330. Reprint

Carman, G.M., and S.A. Henry.  2007.  Special issue:  Regulation of lipid metabolism in yeast.  Biochim. Biophys. Acta. 1771: 239-240. Reprint

Carman, G.M., and G.-S. Han.  2006.  Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem. Sci. 31: 694-699. Reprint

Carman, G. M.  2005.  Regulation of phospholipid synthesis in yeast by zinc.  Biochem. Soc.Trans. 33: 1150-1153. Reprint

Carman, G.M., and M.C. Kersting.  2004.  Phospholipid synthesis in yeast: regulation by phosphorylation. Biochem. Cell Biol. 82: 62-70. Reprint

Han, G.-S., and G.M. Carman.  2004.  Phospholipid synthesis in yeast, in Encyclopedia of Biological Chemistry (W.J. Lennarz and M.D. Lane, eds), Elsevier, Oxford. 3: 321-325.

Oshiro, J., G.-S. Han, and G.M. Carman.  2003.  Diacylglycerol pyrophosphate phosphatase in Saccharomyces cerevisiae.  Biochim. Biophys. Acta 1635: 1-9. Reprint

Kent, C., and G.M. Carman.  1999.  Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus.  Trends Biochem. Sci. 24: 146-150. Reprint

Carman, G.M. and S.A. Henry.  1999.  Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes.  Prog. Lipid Res. 38: 361-399. Reprint

Carman, G.M., and G.M. Zeimetz. 1996. Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiaeJ. Biol. Chem. 271: 13292-13296. Reprint

Carman, G.M. 1997.  Phosphatidate phosphatases and diacylglycerol pyrophosphate phosphatases in Saccharomyces cerevisiae and Escherichia coli.  Biochim. Biophys. Acta  1348: 45-55. Reprint

Carman, G.M., R.A. Deems, and E.A. Dennis. 1995. Lipid signaling enzymes and surface dilution kinetics.J. Biol. Chem. 270: 18711-18714. Reprint